
Algorithms & Data Structures - Summary

Fabian Bosshard

July 29, 2025

Contents

Preface 1

References 1

1 Introduction 1

2 Basics 1
2.1 Incremental Algorithms . 2
2.2 Loop Invariant . 2
2.3 Correctness . 2
2.4 Divide-and-Conquer Algorithms . 2
2.5 Binary Search . 2

3 Sorting 3
3.1 Insertion Sort . 3
3.2 Merge Sort . 3
3.3 Quick Sort (with Lomuto Partitioning) 3
3.4 Heap Sort . 3
3.5 k-Smallest Element . 4
3.6 Overview of Sorting Algorithms . 4
3.7 Application . 4

4 Data Structures 5
4.1 Stacks . 5
4.2 Queues . 5
4.3 Linked Lists . 5
4.4 Dictionaries . 5
4.5 Direct-Address Tables . 5
4.6 Hash Tables . 5

4.6.1 Chaining . 6
4.6.2 Open Addressing . 6

4.7 Binary Search Trees . 6
4.7.1 Traversals . 6
4.7.2 Basic Queries . 6
4.7.3 Updates . 7
4.7.4 Randomized Insertion . 7
4.7.5 Rotations . 7
4.7.6 Root Insertion . 7

4.8 Red-Black Trees . 7

5 Graphs 8
5.1 Representations of Graphs . 8
5.2 Breadth-First Search . 8
5.3 Depth-First Search . 8

5.3.1 Topological Sort . 9
5.3.2 Strongly Connected Components 9

5.4 Minimum Spanning Tree . 9
5.5 Single-Source Shortest Paths . 10

6 Design Techniques 10
6.1 Greedy Algorithms . 10
6.2 Dynamic Programming . 10

7 Complexity Theory 11
7.1 Decision Problems . 11
7.2 Complexity Classes . 11
7.3 Polynomial-Time Reductions . 11
7.4 NP-Hardness and NP-Completeness . 12

Preface

This document is an unofficial student-made summary of the course Algorithms &
Data Structures taught by Antonio Carzaniga in Spring 2025 at the Università della
Svizzera italiana. It is based on the slides and other course materials, as well as [1].
The summary is not exhaustive and may contain errors. If you find any, please report
them to fabianlucasbosshard@gmail.com or open an issue at https://github.com/

fabianbosshard/usi-informatics-course-summaries.

This work is licensed under a Creative Commons “Attri-
bution 4.0 International” license.

References

[1] Thomas H. Cormen et al. Introduction to Algorithms. Fourth. MIT Press,
2022. isbn: 9780262046305. url: https://mitpress.mit.edu/9780262046305/
introduction-to-algorithms/.

1 Introduction

T (n) := number of basic steps needed to compute the result of a problem of size n

Example 1. How many 1, 2-beats can one compose over a total of n beats?

Idea: the number of 1, 2-beats over n beats is the sum of the number of 1, 2-beats over
n− 1 beats and the number of 1, 2-beats over n− 2 beats

Algorithm 1 Pingala

1: function Pingala(n) ▷ Number of 1, 2-beats in n beats
2: if n ≤ 2 then
3: return n
4: return Pingala(n− 1) + Pingala(n− 2)

T (1) = 1, T (2) = 1, T (n) = T (n− 1) + T (n− 2) + 2

T (n) ≥ T (n− 1)︸ ︷︷ ︸
≥T (n−2)

+T (n− 2) ≥ 2T (n− 2)

T (n) ≥ 2T (n− 2) ≥ 2(2T (n− 4)) = 22T (n− 4) ≥ . . . ≥ 2n/2T (0) =
√
2
n
T (0)

This näıve recursive implementation has exponential running time, T (n) = Ω(
√
2
n
).

For this problem, we can do better if we avoid repeating the same computations over
and over again (using Dynamic Programming, see 6.2). ◀

2 Basics

Definition 1. We define the following families of functions:

• O(g(n)) := {f(n) | ∃c > 0, n0 ∈ N | 0 ≤ f(n) ≤ cg(n) for all n ≥ n0}

• Ω(g(n)) := {f(n) | ∃c > 0, n0 ∈ N | 0 ≤ cg(n) ≤ f(n) for all n ≥ n0}

• Θ(g(n)) := {f(n) | ∃c1, c2 > 0, n0 ∈ N | 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) ∀n ≥ n0}

• o(g(n)) := {f(n) | ∀c > 0, ∃n0 ∈ N | 0 ≤ f(n) < cg(n) for all n ≥ n0}

• ω(g(n)) := {f(n) | ∀c > 0, ∃n0 ∈ N | 0 ≤ cg(n) < f(n) for all n ≥ n0} ✍

The notation ‘f(n) =’ is used to denote that f(n) is an element of the set of functions
on the right-hand side.

Example 2. Let π(n) be the number of primes less than or equal to n. Then

π(n) = Θ

(
n

logn

)
. ◀

The Θ-notation, Ω-notation, and O-notation can be viewed as the “asymptotic” =,
≥, and ≤ relations for functions. The o-notation and ω-notation can be viewed as
asymptotic < and >.

Theorem 1. f(n) = Ω(g(n)) ∧ f(n) = O(g(n))⇔ f(n) = Θ(g(n)) ◁

The above theorem can be interpreted as saying

f ≥ g ∧ f ≤ g ⇔ f = g

Example 3. log(n!) ∈ Θ(n logn). We can rewrite log(n!) as

log(n!) = log

(
n∏

i=1

i

)
=

n∑
i=1

log i (1)

Clearly, log(n!) ∈ O(n logn), since n logn = log(nn) =
∑n

i=1 logn ≥
∑n

i=1 log i.

One way to understand why log(n!) ∈ Ω(n logn) is to interpret (1) as a sum of areas,
each rectangle has width 1 and height log i:

https://search.usi.ch/en/courses/35270741/algorithms-data-structures
https://search.usi.ch/en/courses/35270741/algorithms-data-structures
https://www.inf.usi.ch/carzaniga/
https://www.usi.ch/en
https://www.usi.ch/en
https://www.inf.usi.ch/carzaniga/edu/algo24s/index.html
mailto:fabianlucasbosshard@gmail.com
https://github.com/fabianbosshard/usi-informatics-course-summaries
https://github.com/fabianbosshard/usi-informatics-course-summaries
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://mitpress.mit.edu/9780262046305/introduction-to-algorithms/
https://mitpress.mit.edu/9780262046305/introduction-to-algorithms/

x

log x

log 1

log 2

log 3

log 4

...

logn

0 1 2 3 4
. . . n

log(n!)

We can see that the area of the gray rectangles is bounded from below by the area
under the curve y = log x, i.e. ∫ n

1

log xdx ≤ log(n!) (2)

Using integration by parts, we can express the left-hand side of (2) as

∫ n

1

log xdx =

∫ n

1

1
↑
· log x

↓
dx =

[
x log x−

∫
x · 1

x
dx

]n
1

= [x log x− x]n1

= n logn− n+ 1 ∈ Ω(n logn)

Therefore, log(n!) ∈ Ω(n logn) ∧ log(n!) ∈ O(n logn). Using Theorem 1, we conclude
that log(n!) ∈ Θ(n logn). ◀

Notation Name Example

O(1) constant Finding median of sorted array;
computing (−1)n; using a fixed-size
lookup table.

O(α(n)) inverse Acker-
mann

Amortized cost per operation in a
disjoint-set data structure.

O(log∗ n) iterated logarith-
mic

Distributed coloring of cycles (Cole-
Vishkin algorithm).

O(log logn) double logarith-
mic

Interpolation search on uniformly
distributed data.

O(logn) logarithmic Binary search; operations in balanced
trees or a binomial heap.

O(logc n), c > 1 polylogarithmic Matrix-chain ordering on a PRAM.

O(nc), 0 < c < 1 fractional power Searching in a k-d tree.

O(n
logn

) #Primes ≤ n (Example 1).

O(n) linear Scanning an unsorted list; ripple-
carry addition of two n-bit integers.

O(n log∗ n) Seidel’s polygon-triangulation algo-
rithm.

O(n logn) = O(logn!) linearithmic Fastest comparison sorts; Fast Fourier
transform.

O(n2) quadratic Schoolbook multiplication; bub-
ble/selection/insertion sort; worst-
case quicksort; direct convolution.

O(n3) cubic Naive n × n matrix multiplication;
partial correlation.

O(nc), c > 1 polynomial TAG parsing; bipartite matching;
determinant via LU.

Ln[α, c] sub-exponential Factoring via number-field sieve.

O(cn), c > 1 exponential Exact TSP by DP; brute-force logical
equivalence checking.

O(n!) factorial Brute-force TSP; enumerating permu-
tations or partitions; determinant by
Laplace expansion.

When f(n) = O(g(n)), we say that g(n) is an upper bound for f(n), and that g(n)
dominates f(n).

When f(n) = Ω(g(n)), we say that g(n) is a lower bound for f(n).

When f(n) = Θ(g(n)), we say that g(n) is a tight bound for f(n).

We use the o-notation to denote an upper bound that is not asymptotically tight, and
the ω-notation to denote a lower bound that is not asymptotically tight. The following
two implications hold:

f(n) = o(g(n))⇒ lim
n→∞

f(n)

g(n)
= 0 f(n) = ω(g(n))⇒ lim

n→∞

f(n)

g(n)
=∞

2.1 Incremental Algorithms

Example 4 (Hand of cards). Insertion sort (Algorithm 3) uses an algorithm design
technique called incremental method: for each element A[i], it inserts it into its
proper place in the subarray A[1 : i], having already sorted A[1 : i − 1]. This is
reminiscent of how one might sort a hand of cards, where you pick up a card and
insert it into the correct position in the already sorted hand.

At the start of each iteration of the for loop, the subarray A[1 : i − 1] consists of the
elements originally in A[1 : i−1], but in sorted order. This is a loop invariant (Section
2.2). ◀

2.2 Loop Invariant

When using a loop invariante, 3 things need to be shown:

1. Initialization: It is true prior to the first iteration of the loop.

2. Maintenance: If it is true before an iteration of the loop, it remains true before
the next iteration.

3. Termination: When the loop terminates, the invariant gives a useful property
that helps show that the algorithm is correct.

A loop-invariant proof is a form of mathematical induction, where to prove that
a property holds, you prove a base case and an inductive step. Here, showing that
the invariant holds before the first iteration corresponds to the base case, and showing
that the invariant holds from iteration to iteration corresponds to the inductive step.
The third property is perhaps the most important one, since you are using the loop
invariant to show correctness. Typically, you use the loop invariant along with the
condition that caused the loop to terminate. Mathematical induction typically applies
the inductive step infinitely, but in a loop invariant the “induction” stops when the
loop terminates.

2.3 Correctness

You are given a problem P and an algorithm A. P formally defines a correctness
condition. Assume, for simplicity, that A consists of one loop.

1. Formulate an invariant C

2. Initialization: prove that C holds right before the first execution of the first
instruction of the loop

3. Management: prove that if C holds right before the first instruction of the loop,
then it holds also at the end of the loop

4. Termination: prove that the loop terminates, with some exit condition X

5. Prove that X ∧ C ⇒ P , which means that A is correct

2.4 Divide-and-Conquer Algorithms

Many useful algorithms are recursive: they recurse (call themselves) one or more
times to handle closely related subproblems. These algorithms typically follow the
divide-and-conquer method: they break the problem into several subproblems that
are similar to the original problem but smaller in size, solve the subproblems recursively,
and then combine these solutions to create a solution to the original problem.

In the divide-and-conquer method, if the problem is small enough (the base case), you
just solve it directly without recursing. Otherwise (the recursive case), you perform
three characteristic steps:

1. Divide the problem into one or more subproblems that are smaller instances of
the same problem.

2. Conquer the subproblems by solving them recursively.

3. Combine the subproblem solutions to form a solution to the original problem.

When an algorithm contains a recursive call, we can often describe its running time
with a recurrence relation, which expresses the overall running time of a problem
of size n in terms of the running time of the same algorithm on smaller inputs.

Let T (n) be the worst case running time on an input of size n. If the problem is small
enough, say n ≤ n0, for some constant n0, the straightforward solution takes constant
time Θ(1). Suppose that the division of the problem yields a subproblems, each of size
n/b.1 If it takes D(n) time to divide the problem into subproblems and C(n) time to
combine the solutions to the subproblems into the solution to the original problem, we
get the recurrence

T (n) =

{
Θ(1) if n ≤ n0

D(n) + aT (n/b) + C(n) if n > n0

(3)

Theorem 2 (Master Theorem). Let a > 0 and b > 1 be constants, and let f(n) be a
driving function that is defined and nonnegative on all sufficiently large reals. Define
the recurrence T (n) on n ∈ N by

T (n) = aT (n/b) + f(n)

where aT (n/b) actually means a′T (⌊n/b⌋) + a′′T (⌈n/b⌉) for some constants a′ ≥ 0
and a′′ ≥ 0 satisfying a = a′ + a′′. Then the asymptotic behavior of T (n) can be
characterized as follows:

1. If there exists a constant ϵ > 0 such that f(n) = O
(
nlogb a−ϵ

)
, then T (n) =

Θ
(
nlogb a

)
.

2. If there exists a constant k ≥ 0 such that f(n) = Θ
(
nlogb a lgk n

)
, then T (n) =

Θ
(
nlogb a lgk+1 n

)
.

3. If there exists a constant ϵ > 0 such that f(n) = Ω
(
nlogb a+ϵ

)
, and if f(n) addi-

tionally satisfies the regularity condition af(n/b) ≤ cf(n) for some constant c < 1
and all sufficiently large n, then T (n) = Θ(f(n)). ◁

2.5 Binary Search

Algorithm 2 is an efficient method for finding an element x in a sorted array A. By
repeatedly halving the search interval, it reduces the problem size exponentially: at
each step, it compares x to the middle element of the current interval and discards
the half in which x cannot lie. This yields a worst-case running time of O(logn), a
dramatic improvement over a linear search’s O(n) behavior.
1For merge sort (Algorithm 4), a = b = 2, but there are other divide-and-conquer algorithms in

which a ̸= b.

2

Algorithm 2 Binary Search

1: function BinarySearch(A, x)
2: l← 1 ▷ leftmost index
3: r ← len(A) ▷ rightmost index
4: while l ≤ r do
5: m← ⌊(l + r)/2⌋ ▷ midpoint of A[l : r]
6: if A[m] < x then
7: l← m+ 1 ▷ search in right half
8: else if A[m] > x then
9: r ← m− 1 ▷ search in left half

10: else
11: return m ▷ found x at index m
12: return 0 ▷ not found: 0 is not a valid index

3 Sorting

3.1 Insertion Sort

Was already used to sort cards in Section 2.1, Example 4.

Algorithm 3 Insertion Sort

1: function InsertionSort(A)
2: for i = 2, . . . , len(A) do
3: j ← i
4: while j > 1 ∧A[j − 1] > A[j] do
5: swap A[j] and A[j − 1]
6: j ← j − 1

3.2 Merge Sort

Algorithm 4 Merge Sort

1: function MergeSort(A)
2: if len(A) ≤ 1 then ▷ base case (array is trivially sorted)
3: return A
4: m = ⌊len(A)/2⌋ ▷ midpoint of A
5: AL ← MergeSort(A[1 : m]) ▷ recursively sort A[1 : m]
6: AR ← MergeSort(A[m+1 : |A|]) ▷ recursively sort A[m+1 : |A|]
7: return Merge(AL, AR) ▷ merge the two sorted arrays

Algorithm 5 Merge

1: function Merge(A,B)
2: i, j ← 1
3: C ← []
4: while i ≤ len(A) ∨ j ≤ len(B) do
5: if i ≤ len(A) ∧ (j > len(B) ∨A[i] < B[j]) then
6: append A[i] to C
7: i← i+ 1
8: else
9: append B[j] to C

10: j ← j + 1
11: return C

We describe the running time of merge sort (Algorithm 4) as follows:

1. Divide: compute the middle of the array (Algorithm 4, Line 4), which takes
constant time, D(n) = Θ(1)

2. Conquer: recursively solve two subproblems (Algorithm 4, Line 5, 6), each of
size n/2, contributes 2T (n/2)

3. Combine: merge (Algorithm 5) the two sorted subarrays, which takes Θ(n) time,
C(n) = Θ(n)

Using the so called ‘master theorem’:

T (n) = 2T (n/2) + Θ(n)
master theorem
==========⇒ T (n) = Θ(n log2 n)

Intuitively we can also understand why that is the case without the master theorem.
Assume for simplicity that n is an exact power of 2 and that the implicit base case is
n = 1:

T (n) =

{
c1 if n = 1

2T (n/2) + c2n if n > 1

where c1 > 0 represents the time to solve the base case (n = 1) and c2 > 0 is the time
per element of the divide and combine steps.

c2 · n

c2 · n/2 c2 · n/2

c2 · n/4 c2 · n/4 c2 · n/4 c2 · n/4

c1 c1 c1 c1 c1 c1

n

log2 n+ 1

c2 · n

c2 · n

c2 · n

...

c1 · n

T (n) = 2T (n/2) + c2n = 2(2T ((n/2)/2) + c2(n/2)) + c2n

= 22T (n/22) + 2c2n = 22(2T ((n/22)/2) + c2(n/2
2)) + 2c2n

= 23T (n/23) + 3c2n = 23(2T ((n/23)/2) + c2(n/2
3)) + 3c2n

...

= 2log2(n)T (n/2log2(n)) + log2(n)c2n

= nT (1) + log2(n)c2n

= c1n+ c2n log2 n

= Θ(n logn)

3.3 Quick Sort (with Lomuto Partitioning)

v≤ v > v ? · · · ?

i jl r

Lomuto partitioning (Algorithm 7) divides an array A into two subarrays A[l : q − 1]
and A[q+1 : r] such that all elements in A[l : q− 1] are less than or equal to A[q] and
all elements in A[q + 1 : r] are greater than A[q].

Algorithm 6 Quick Sort

1: function QuickSort(A, l, r)
2: if l < r then
3: q = Partition(A, l, r)
4: QuickSort(A, l, q − 1)
5: QuickSort(A, q + 1, r)

Algorithm 7 Lomuto Partitioning

1: function Partition(A, l, r)
2: v = A[r] ▷ pick last element as pivot
3: i = l − 1 ▷ highest index into the less-than-or-equal–partition
4: for j = l, . . . , r do
5: if A[j] ≤ v then
6: i = i+ 1
7: swap A[i] and A[j]
8: return i ▷ index of pivot

3.4 Heap Sort

Definition 2 (Heap). A binary heap is a nearly-complete binary tree stored in an
array A[1 : n] satisfying the max-heap property:

∀i > 1 : A[Parent(i)] ≥ A[i]

The relationship between the indices of a binary heap is as follows:

Parent(i) = ⌊i/2⌋ Left(i) = 2i Right(i) = 2i+ 1 ✍

Furthermore, an n-element heap has height h = ⌊log2 n⌋ and at most ⌈n/2h̃+1⌉ nodes
at any given height h̃, where h̃ is defined as the longest path from the current node to
a leaf node, measured in number of edges.

1

2 3

4 5 6 7

.

2h−1

2h 2h+1

.

. . .

n−1 n

⌊
n
2

⌋

2h−1

h = ⌊log2 n⌋

h̃ = h−1

h̃ = h−2

...

h̃ = 1

h̃ = 0

h
=

⌊
lo
g
n
⌋

1 2 3 4 5 6 7

. . .

2h−1

. . .

⌊
n
2

⌋
. . .

2h−1 2h 2h+1

. . .

n−1 n

Algorithm 10 sorts an array A in place by first building a max-heap from the input
array and then repeatedly extracting the maximum element (the root of the heap) and
placing it at the end of the array. The complexities of Algorithms 8, 9, 10 are:

TMaxHeapify(n) = Θ(logn) TBuildMaxHeap(n) = Θ(n)

THeapSort(n) = Θ(n logn)

The complexity of Algorithm 8 is determined by the height h̃ of the node to be heapi-
fied, which is given by

h̃ = h−Depth(i) = ⌊logn⌋ − ⌊log i⌋ (4)

for a node at index i.

3

Algorithm 8 Max-Heapify

1: function MaxHeapify(A, i)
2: l← Left(i)
3: r ← Right(i)
4: m← i ▷ index of largest element among {A[i], A[l], A[r]}
5: if l ≤ A.heap-size ∧A[l] > A[m] then
6: m← l
7: if r ≤ A.heap-size ∧A[r] > A[m] then
8: m← r
9: if m ̸= i then

10: swap A[i] and A[m]
11: MaxHeapify(A,m)

Algorithm 9 Build-Max-Heap

1: function BuildMaxHeap(A)
2: A.heap-size← |A|
3: for i = ⌊|A|/2⌋, . . . , 1 do ▷ elements after ⌊|A|/2⌋ are leaves
4: MaxHeapify(A, i)

Algorithm 10 Heap Sort

1: function HeapSort(A)
2: BuildMaxHeap(A)
3: for i = |A|, . . . , 2 do
4: swap A[1] and A[i]
5: A.heap-size← A.heap-size− 1
6: MaxHeapify(A, 1)

Analyzing the complexity of Algorithm 9 is more involved. A simple upper bound
on the running time is O(n lgn), since each call to MaxHeapify costs O(logn) and
BuildMaxHeap makes O(n) such calls. This upper bound is correct but not asymp-
totically tight.

We can derive a tighter bound by recalling that the time for MaxHeapify to run at
a node i depends on the height h̃ of that node in the tree, and that the height of most
nodes is small.

Calling MaxHeapify on a node of height h̃ costs c h̃, and there are at most ⌈n/2h̃+1⌉
nodes at that height. We can sum over all heights, starting from the leaves (with
height 0) up to the root (with height ⌊logn⌋);

T (n) =

⌊logn⌋∑
h̃=0

⌈
n

2h̃+1

⌉
c h̃ ≤

⌊logn⌋∑
h̃=0

n

2h̃
c h̃ = c n

⌊logn⌋∑
h̃=0

h̃

2h̃
≤ c n

∞∑
h̃=0

h̃

2h̃
(5)

Recall the geometric series:

∞∑
h̃=0

xh̃ =
1

1− x
, |x| < 1

Differentiating both sides with respect to x gives:

d

dx

 ∞∑
h̃=0

xh̃

 =
d

dx

(
1

1− x

)
=⇒

∞∑
h̃=0

h̃ xh̃−1 =
1

(1− x)2

Multiply through by x to shift the exponent back:

∞∑
h̃=0

h̃ xh̃ = x

∞∑
h̃=0

h̃ xh̃−1 =
x

(1− x)2
, |x| < 1, (6)

Setting x = 1
2
in (6) and substituting into (5) gives

T (n) ≤ c n

∞∑
h̃=0

h̃

(
1

2

)h̃

= c n ·
1
2(

1− 1
2

)2 = O(n) (7)

Thus BuildMaxHeap builds a max-heap from an array in O(n) time.

For Algorithm 10, we have a similar situation, but different from BuildMaxHeap,
where the majority of the calls to MaxHeapify are done on nodes at the bottom of
the heap (where the height is small), in HeapSort, the calls to MaxHeapify are
always done on the root of the heap, and the height is large for the majority of the
calls.

After BuildMaxHeap has finished (line 2), the array A is a valid max-heap of size
n. The HeapSort loop (lines 3-6) then performs exactly n − 1 iterations. At the
kth iteration the heap contains n − k + 1 elements, so the call to MaxHeapify costs
Θ
(
log(n− k + 1)

)
. The total time spent in the loop is therefore

n−1∑
k=1

Θ(log(n− k + 1)) = Θ

(
n−1∑
l=1

log l

)
= Θ(log(n!))

Ex. 3
= Θ(n logn)

where the change of index l = n− k + 1 rewrites the sum in increasing order.

3.5 k-Smallest Element

Algorithm 11 is a randomized “divide-and-conquer” method for finding the k-th small-
est element in an unsorted array in expected O(n) time. At each step it chooses a
pivot uniformly at random, partitions the input into three subsets – those less than,
equal to, and greater than the pivot – and then recurses only on the subset that must
contain the desired element.

Partitioning around the pivot takes Θ(n) time, and since the pivot is random the
expected size of the recursive call is at most a constant fraction of n, yielding an
overall expected running time of O(n).

Algorithm 11 Quick Select

1: function QuickSelect(A, k) ▷ A is an unordered multiset (‘bag’) of elements
2: v ← A[randint(1, |A|)] ▷ pick a random pivot
3: AL, AM , AR ← {}m ▷ three empty multisets
4: for all a ∈ A do
5: if a < v then
6: add a to AL

7: else if a = v then
8: add a to AM

9: else
10: add a to AR

11: if k ≤ |AL| then
12: return QuickSelect(AL, k)
13: else if k ≤ |AL|+ |AM | then
14: return v
15: else
16: return QuickSelect(AR, k − (|AL|+ |AM |))

3.6 Overview of Sorting Algorithms

Algorithm Time Complexity in place?
worst average best

InsertionSort Θ(n2) Θ(n2) Θ(n) ✔

SelectionSort Θ(n2) Θ(n2) Θ(n2) ✔

MergeSort Θ(n logn) Θ(n logn) Θ(n logn) ✘

QuickSort Θ(n2) Θ(n logn) Θ(n logn) ✔

HeapSort Θ(n logn) Θ(n logn) Θ(n logn) ✔

3.7 Application

When an array is sorted, many operations and queries (e.g. the one in Example 5) can
be performed much more efficiently than in an unsorted array.

Example 5 (Caterpillar Method). Checking if a sorted array contains two elements
A[i] and A[j] such that A[i] + q = A[j], can be done in linear running time using the

method (sometimes also called “two-pointer” or “sliding-window” method).

x

y

A[1]
. . .

A[n]

A[1]

...

A[n]

A[i]

A[j]

y = x+ q

Algorithm 12 Checking for two elements with difference q

1: function Caterpillar(A, q)
2: l, r ← 1
3: while r ≤ n do
4: if A[r] < A[l] + q then
5: r ← r + 1
6: else if A[r] > A[l] + q then
7: l← l + 1
8: else
9: return true

10: return false

Algorithm 12 maintains two indices l and r, both starting at the left end of A (Line
2). At each step, it compares A[r] and A[l] and checks if the difference A[r] − A[l] is
less than, greater than, or equal to q:

• If A[r]−A[l] < q, move r one step to the right (to increase the difference).

• If A[r]−A[l] > q, move l one step to the right (to decrease the difference).

• If A[r]−A[l] = q, we found a valid pair and stop. ◀

4

4 Data Structures

Operations on a dynamic set can be grouped into two categories, queries, which return
information about the set, and modifying operations, which change the set:

• Search(S, k)
query that, given a set S and a key value k, returns a pointer x to an element in
S such that x.key = k, or nil if no such element belongs to S

• Insert(S, x)
modifying operation that adds the element pointed to by x to the set S (we
usually assume that any attributes in element x needed by the set implementation
have already been initialized)

• Delete(S, x)
modifying operation that, given a pointer x to an element in the set S, removes
x from S (note that this operation takes a pointer to an element x, not a key value!)

• Minimum(S) and Maximum(S)
queries on a totally ordered set S that return a pointer to the element of S with
the smallest (for Minimum) or largest (for Maximum) key

• Successor(S, x)
query that, given an element x whose key is from a totally ordered set S, returns
a pointer to the next larger element in S, or nil if x is the maximum element

• Predecessor(S, x)
query that, given an element x whose key is from a totally ordered set S, returns
a pointer to the next smaller element in S, or nil if x is the minimum element

4.1 Stacks

Definition 3 (Stack). A stack is a LIFO container that supports constant-time
insertion and deletion at one end. ✍

freeS

1 S.top N

Interface (Algorithm 13):

• StackEmpty(S): returns true iff the stack S contains no elements.

• Push(S, x): places element x on the top of the stack S.

• Pop(S): removes and returns the top element of the stack S.

The stack has attributes S.top, indexing the most recently inserted element, and
S.length, equaling the size N of the array.

Algorithm 13 Stack Operations (array-based)

1: function StackEmpty(S)
2: return

(
S.top = 0

)
3: function Push(S, x)
4: if S.top = S.length then
5: error “overflow”
6: S.top← S.top+ 1
7: S[S.top]← x
8: function Pop(S)
9: if StackEmpty(S) then

10: error “underflow”
11: S.top← S.top− 1
12: return S[S.top+ 1]

4.2 Queues

Definition 4 (Queue). A queue is a FIFO container with constant-time insertion
at the tail and deletion at the head. ✍

Interface (Algorithms 14 and 15):

• Enqueue(Q, x): insert x at the tail of Q.

• Dequeue(Q): remove and return the head element of Q.

The classic fixed-length circular-array implementation keeps two indices Q.head and
Q.tail (Q.head points to the first element, Q.tail to the first free slot).

free freeQ

1 Q.head Q.tail N

Algorithm 14 Enqueue (circular array)

1: function Enqueue(Q, x)
2: if Q.queue-full then
3: error “overflow”
4: Q[Q.tail]← x
5: Q.tail← (Q.tail mod Q.length) + 1
6: Q.queue-empty← false

7: if Q.tail = Q.head then
8: Q.queue-full← true

Algorithm 15 Dequeue (circular array)

1: function Dequeue(Q)
2: if Q.queue-empty then
3: error “underflow”
4: x← Q[Q.head]
5: Q.head← (Q.head mod Q.length) + 1
6: Q.queue-full← false

7: if Q.tail = Q.head then
8: Q.queue-empty← true

9: return x

4.3 Linked Lists

Definition 5 (Doubly-Linked List). A doubly-linked list L consists of nodes x
that store a key x.key and two links x.prev, x.next. A special sentinel node L.nil
simplifies boundary cases because the list is empty iff L.nil.next = L.nil. ✍

nil k1 k2 . . . kn

L.nil

Algorithm 16 Doubly-Linked List Operations (with sentinel)

1: function ListInit(L)
2: L.nil.prev← L.nil
3: L.nil.next← L.nil
4: function ListInsert(L, x) ▷ insert at front
5: x.next← L.nil.next
6: L.nil.next.prev← x
7: L.nil.next← x
8: x.prev← L.nil
9: function ListDelete(x)

10: x.prev.next← x.next
11: x.next.prev← x.prev
12: function ListSearch(L, k)
13: x← L.nil.next
14: while x ̸= L.nil ∧ x.key ̸= k do
15: x← x.next
16: return x

Algorithm 16 shows the basic operations on a doubly-linked list. ListInsert and
ListDelete take O(1) time, whereas ListSearch takes Θ(n) time in the worst case,
with n the current length of L.

4.4 Dictionaries

Definition 6 (Dictionary). A dictionary is an abstract data structure that repre-
sents a set of elements (or keys). It is a dynamic set that supports the following
operations:

• Insert: insert element into the set

• Delete: delete element from the set

• Search: test memebership of an element in the set ✍

4.5 Direct-Address Tables

Definition 7 (Direct-Address Table). A direct-address table implements a dictio-
nary. Suppose the key universe is the set U = {1, . . . ,M}. A direct-address table
is an array T [1 : M] where slot T [k] stores a Boolean indicating membership of key k
in the represented set. ✍

Algorithm 17 Direct-Address Table Operations

1: function DirectAddressInsert(T, k)
2: T [k]← true

3: function DirectAddressDelete(T, k)
4: T [k]← false

5: function DirectAddressSearch(T, k)
6: return T [k]

All direct-address table operations (Algorithm 17) cost O(1) time, but the table occu-
pies Θ(|U |) space, which is prohibitive when the universe is large and the actual set is
sparse. i.e., direct-address tables usually waste a lot of space.

4.6 Hash Tables

To reduce the space overhead we use a smaller table T with |T | ≪ |U | and map each
key k ∈ U to a position in T using a hash function h : U → {1, . . . , |T |}.

Definition 8 (Load Factor). For a table of size |T | that currently stores n keys, the
load factor is α = n

|T | . ✍

5

4.6.1 Chaining

Each slot T [i] stores a linked list of keys that hash to i.

U
(universe of keys)

K
(actual keys)

h

T

i = 1

i = 2

i = 3

...

i = |T |

Algorithm 18 Chained Hash Operations

1: function ChainedHashInsert(T, k)
2: ListInsert(T [h(k)], k)
3: function ChainedHashSearch(T, k)
4: return ListSearch(T [h(k)], k)
5: function ChainedHashDelete(T, k)
6: x← ChainedHashSearch(T, k)
7: if x ̸= nil then
8: ListDelete(x)

We assume uniform hashing i.e.

P[h(k) = i] =
1

|T | ∀i ∈ {1, . . . , |T |}

So, given n distinct keys, the expected length ni of the linked list at position i is

E[ni] =
n

|T | = α

If we further assume h(k) can be computed in O(1), the expected running time of
ChainedHashSearch is

Θ(1 + α)

4.6.2 Open Addressing

Instead of using linked lists, keys are stored directly in the array. On a collision
we probe other slots in T using a permutation h(k, 1), . . . , h(k, |T |). So h(k, i) is a
function of both k and i, where i is the probe number.

h(k, ·) must be a permutation of {1, . . . , |T |}, i.e., h(k, 1), . . . , h(k, |T |) must cover all
slots in T exactly once.

We assume independent uniform permutation hashing: the probe sequence of
each key is equally likely to be any of the |T |! permutations of {1, . . . , |T |}. Independent
uniform permutation hashing generalizes the notion of independent uniform hashing
introduced earlier to a hash function that produces not just a single slot number, but
a whole probe sequence. True independent uniform permutation hashing is difficult to
implement, however, and in practice suitable approximations (such as double hashing,
Example 6) are used.

Neither double hashing nor its special case, linear probing, meets the assumption
of independent uniform permutation hashing. Double hashing cannot generate more
than |T |2 different probe sequences. Nonetheless, double hashing has a large number
of possible probe sequences and seems to give good results. Linear probing is even
more restricted, capable of generating only |T | different probe sequences.

Example 6 (Double Hashing). Double hashing offers one of the best methods avail-
able for open addressing because the permutations produced have many of the char-
acteristics of randomly chosen permutations. Double hashing uses a hash function of
the form

h(k, i) = (h1(k) + i · h2(k)) mod |T | (8)

where h1 and h2 are two different hash functions. The second hash function h2(k)
must be relatively prime to |T | (i.e., gcd(h2(k), |T |) = 1) to ensure that all slots in
T are probed. A convenient way to achieve this is to let |T | be an exact power of 2
and to design h2(k) so that it always produces an odd number. Another way is to let
|T | be prime and to design h2(k) so that it always returns a positive integer less than
|T |. In (8) we can also set h2(k) = 1 for all k, in which case we get linear probing,
a special case of double hashing. ◀

Algorithm 19 Open-Address Hash Insert (generic probing)

1: function HashInsert(T, k)
2: for i = 1, . . . , |T | do
3: j ← h(k, i)
4: if T [j] = nil then
5: T [j]← k
6: return j
7: error “overflow”

To analyze the time complexity of Algorithm 19, we assume independent uniform
permutation hashing for the hash function. We also assume that at least one slot is
empty, i.e., α < 1. Because deleting from an open-address hash table does not really
free up a slot, we assume as well that no deletions occur.

If we denote by X the number of probes performed until an empty slot is found, then
on each probe we hit an occupied slot with probability α = n/|T | and an empty slot
with probability 1− α. Hence

P[X = i] = αi−1(1− α), i = 1, 2, . . .

so that X is geometrically distributed with success probability 1− α. Hence

E[X] =

∞∑
i=1

iαi−1(1− α) =
1

1− α

Thus an insertion (or an unsuccessful search) requires on average 1
1−α

probes; this
grows rapidly as the load factor α approaches 1.

4.7 Binary Search Trees

Definition 9 (Binary Search Tree). A binary search tree implements a dynamic
set. It stores keys from a totally ordered domain in nodes linked by left and right
child pointers such that for every node x

y ∈ left-subtree(x)⇔ y.key ≤ x.key, z ∈ right-subtree(x)⇔ z.key ≥ x.key

✍

Example 7 (Lower Bound). Let t be the root of a binary search tree that represents
a set S of numbers. The size of the tree is |S| = n. The height of the tree is h.
Algorithm 20 returns the node containing the least element y ∈ S such that x ≤ y, or
nil if no such element exists.

Algorithm 20 Lower Bound for Binary Search Tree

1: function LowerBound(t, x)
2: if t = nil then ▷ base case
3: return nil
4: if t.key < x then
5: return LowerBound(t.right, x)
6: else
7: y ← LowerBound(t.left, x)
8: if y ̸= nil then
9: return y

10: else
11: return t

The complexity is O(h), where h is the height of the tree. ◀

4.7.1 Traversals

Algorithm 21 Inorder Tree Walk (recursive)

1: function TreeWalk(x)
2: if x ̸= nil then
3: TreeWalk(x.left)
4: print x.key
5: TreeWalk(x.right)

Algorithm 21 shows the InOrderTreeWalk algorithm. Three other variants can be
obtained from Algorithm 21 by swapping the order of the recursive calls and the print
statement (lines 3, 4, and 5). For PreOrderTreeWalk, we swap lines 3 and 4. For
PostOrderTreeWalk, we swap lines 4 and 5. For ReverseOrderTreeWalk, we
swap lines 3 and 5.

The general recurrence is

T (n) = T (nL) + T (n− nL − 1) + Θ(1)

and all four variants run in Θ(n) time. This can be proven using the substitution
method. Can we do better? No, because the length of the output is Θ(n).

4.7.2 Basic Queries

Algorithm 22 Searching a Binary Search Tree for a Key

1: function TreeSearch(x, k)
2: if x = nil ∨ k = x.key then
3: return x
4: if k < x.key then
5: return TreeSearch(x.left, k)
6: else
7: return TreeSearch(x.right, k)

Algorithm 23 Minimum of a Binary Search Tree

1: function TreeMinimum(x)
2: while x.left ̸= nil do
3: x← x.left
4: return x

To find the maximum, replace all occurences of left with right in Algorithm 23.

Definition 10 (Successor). The successor of a node x is the minimum of the right
subtree of x if it exists, otherwise it is the lowest ancestor a of x such that x falls in
the left subtree of a. ✍

To find the predecessor, replace all occurences of right with left and use TreeMax-
imum instead of TreeMinimum in Algorithm 24.

6

Algorithm 24 Successor of a Node in a Binary Search Tree

1: function TreeSuccessor(x)
2: if x.right ̸= nil then
3: return TreeMinimum(x.right) ▷ leftmost node in right subtree
4: while x.parent ̸= nil ∧ x.parent.right = x do
5: x← x.parent
6: return x.parent ▷ lowest ancestor of x whose left child is an ancestor of x

4.7.3 Updates

Algorithm 25 Inserting a Node into a Binary Search Tree

1: function TreeInsert(T, z)
2: y, x← nil, T.root
3: while x ̸= nil do
4: y ← x
5: if z.key < x.key then
6: x← x.left
7: else
8: x← x.right
9: z.parent← y

10: if y = nil then
11: T.root← z
12: else if z.key < y.key then
13: y.left← z
14: else
15: y.right← z

Deletion distinguishes three cases:

• z is a leaf node, i.e. it has no children:

• simply remove the node z

• z has one child:

• remove z

• connect its child to its parent

• z has two children:

• find the successor y of z (since z has two children, y is guaranteed to be the
minimum of the right subtree of z and thus have at most one child)

• copy the key of y into z

• delete y, which is a leaf or has one right child, i.e. connect the child of y to
the parent of y

Algorithm 26 Deleting a Node from a Binary Search Tree

1: function TreeDelete(T, z)
2: ▷ z has two children: find successor, copy its key, then delete successor ◁
3: if z.left ̸= nil ∧ z.right ̸= nil then
4: s← TreeMinimum(z.right)
5: z.key← s.key ▷ replace the key in z with the one from the successor
6: return TreeDelete(T, s)
7: ▷ z has at most one child: pick it (could be nil) ◁
8: if z.left ̸= nil then
9: c← z.left

10: else
11: c← z.right
12: if c ̸= nil then ▷ if child exists, update its parent pointer
13: c.parent← z.parent
14: if z.parent = nil then ▷ if z was the root, make child the new root
15: T.root← c
16: else ▷ otherwise, bypass z by connecting its child to its parent
17: if z = z.parent.left then
18: z.parent.left← c
19: else
20: z.parent.right← c
21: return T

Insertion, search and deletion operations have complexity Θ(h) where h is the height
of the tree. In the average case, the height is O(logn) (i.e. with a random insertion
order). In some particular cases, the height can be O(n) (i.e. with ordered sequence).

The problem is that the ‘worst case’ is not that uncommon. One way to avoid this is
to instead of inserting A = [a1, a2, a3, . . . , an] in order, insert a random permutation of
A. The problem is that A is usually not known in advance. It is the application that
calls the insertion procedure. But we can also obtain a random permutation of A by
using a randomized insertion algorithm (see 4.7.4).

4.7.4 Randomized Insertion

In order to avoid the linear-height worst case one can insert into a tree using Algo-
rithm 27. The idea behind the function TreeRandomizedInsert is as follows. We
insert a new node z into the tree t as the new root of t with probability 1/(t.size+1).
If z is not inserted as the new root, we recursively insert it into the appropriate subtree
of t. The additional attribute t.size represents the number of nodes in the subtree
rooted at t.

With Algorithm 27 every insertion order is equally likely; the expected height of the
tree is O(logn) and all operations run in expected O(logn) time.

Algorithm 27 Randomized Insertion into a Binary Search Tree

1: function TreeRandomizedInsert(t, z)
2: if t = nil then
3: return z
4: r ← randint(1, t.size+ 1)
5: if r = 1 then ▷ P(r = 1) = P(z is inserted as the new root of t) = 1

t.size+1

6: z.size← t.size+ 1
7: return TreeRootInsert(t, z) ▷ see 4.7.6
8: if z.key < t.key then
9: t.left← TreeRandomizedInsert(t.left, z)

10: else
11: t.right← TreeRandomizedInsert(t.right, z)
12: t.size← t.size+ 1
13: return t

4.7.5 Rotations

Definition 11 (Rotation). A rotation is a local restructuring of a BST that ex-
changes the relative position of a node x and one of its children while preserving the
in-order sequence of keys. Rotations do not change the in-order ordering of the keys
and they are the basic tool used by self-balancing trees. ✍

x

b

a
l

α

k ≤ a

β

a ≤ k ≤ b

γ

k ≥ b

x

a

b

r

α

k ≤ a

β

a ≤ k ≤ b

γ

k ≥ b

LeftRotate

RightRotate

Algorithm 28 Rotations in a Binary Search Tree

1: function RightRotate(x)
2: l← x.left
3: x.left← l.right
4: l.right← x
5: return l
6: function LeftRotate(x)
7: r ← x.right
8: x.right← r.left
9: r.left← x

10: return r

Rotations are very useful operations. For example, we can use it to perform

4.7.6 Root Insertion

Algorithm 29 Root Insertion into a Binary Search Tree

1: function TreeRootInsert(x, z)
2: if x = nil then
3: return z
4: if z.key < x.key then
5: x.left← TreeRootInsert(x.left, z)
6: return RightRotate(x)
7: else
8: x.right← TreeRootInsert(x.right, z)
9: return LeftRotate(x)

General strategies to deal with complexity in the worst case:

• Randomization: can make the scenario h = n highly unlikely

• Amortized Maintenance: relatively expensive but ‘amortized’ operations

• Self-Balancing: e.g. Red-Black trees (see 4.8)

4.8 Red-Black Trees

A red-black tree is a binary search tree with one extra bit of storage per node: its
color, which can be either red or black. By constraining the node colors on any
simple path from the root to a leaf, red-black trees ensure that no such path is more
than twice as long as any other, so that the tree is approximately balanced.

Definition 12 (Red-Black Tree). A red-black tree is a binary search tree that satisfies
the following red-black properties:

1. Every node is either red or black.

2. The root is black.

3. Every leaf (nil) is black.

4. If a node is red, then both its children are black.

5. For each node, all simple paths from the node to descendant leaves contain the
same number of black nodes. ✍

7

Definition 13 (Black-Height). The number of black nodes on any simple path from,
but not including, a node x down to, and including, a leaf is called the black-height
of the node x:

bh(x) := #black nodes on path from (excluding) x to (including) leafs

By property 5, the notion of black-height is well defined, since all descending paths
have the same number of black nodes. ✍

Lemma 3 (Height of a Red-Black Tree). The height h(x) of a red-black tree with
n = size(x) internal nodes is at most 2 log(n+ 1). ◁

Proof. First, we prove (by induction) that the subtree rooted at any node x contains
at least

2bh(x) − 1 (9)

internal nodes.

(i) base case: x is a leaf, so size(x) = 0 and bh(x) = 0, fulfilling (9) ✔

(ii) induction step: consider x, y1, y2 such that x = y1.parent = y2.parent

size(x) = size(y1) + size(y2) + 1 ≥ (2bh(y1) − 1) + (2bh(y2) − 1) + 1

By rule 5, both children must have the same black-height. Let bh(y) = bh(y1) =
bh(y2). Then

size(x) ≥ 2 · (2bh(y) − 1) + 1 = 2bh(y)+1 − 1

The black-height of a child y differs at most by one from the black-height of the
parent x, i.e. bh(y) ∈ {bh(x), bh(x) − 1}. In both cases, we have size(x) ≥
2bh(x) − 1, fulfilling (9) ✔

By property 4, the black-height of a node x is at least half the height of the tree, i.e.
bh(x) ≥ h(x)

2
. Therefore,

n = size(x) ≥ 2bh(x) − 1 ≥ 2
h(x)

2 − 1

which can be rearranged to
h(x) ≤ 2 log(n+ 1) □

5 Graphs

5.1 Representations of Graphs

There are two standard ways to represent a graph: as a collection of adjacency lists or
as an adjacency matrix. Because the adjacency-list representation provides a compact
way to represent sparse graphs (those for which |E| ≪ |V |2), it is usually the method
of choice. The adjacency-matrix representation might be preferred when the graph is
dense (i.e., |E| ≈ |V |2), or you need to be able to tell quickly wether there is an edge
connecting two given vertices.

The space required for the adjacency-list representation is Θ(|V | + |E|), and finding
each edge in the graph also takes Θ(|V | + |E|) time, since each of the |V | adjacency
lists must be examined.

The space required for the adjacency-matrix representation is Θ(|V |2), and finding
each edge in the graph takes Θ(|V |2) time, since the entire adjacency matrix must be
examined. For an undirected graph, the adjacency matrix is symmetric.

The complexity for different operations is summarized in the following table.

Operation Representation

Adjacency List Adjacency Matrix

accessing vertex u O(1)
optimal

O(1)
optimal

iteration through V Θ(|V |)
optimal

Θ(|V |)
optimal

iteration through E Θ(|V |+ |E|)
okay (not optimal)

Θ(|V |2)
possibly very bad

checking (u, v) ∈ E O(|V |)
bad

O(1)
optimal

space complexity Θ(|V |+ |E|)
optimal

Θ(|V |2)
possibly very bad

5.2 Breadth-First Search

Breadth-First Search is one of the simplest but also a fundamental algorithm, as it is
the archetype of many important algorithms.

We enqueue a vertex only if is white, and we immediately color it gray; thus, we
enqueue every vertex at most once. So the (dequeue) while loop at Line 7 executes
O(|V |) times. For each vertex u, the inner loop at Line 9 executes Θ(|Γ(u)|) times, for
a total of O(|E|) steps. Thus, the total running time is O(|V |+ |E|).

The minimum number of edges in any path from s to v is called the shortest-path
distance from s to v and is denoted by δ(s, v). If there is no path from s to v, then
δ(s, v) =∞. We define the predecessor subgraph as Gπ = (Vπ, Eπ) where

Vπ = {v ∈ V | v.π ̸= nil} ∪ {s}

and
Eπ = {(v.π, v) | v ∈ Vπ \ {s}}

The predecessor subgraph Gπ is a breadth-first tree if Vπ consists of all vertices
reachable from s and, for all v ∈ Vπ, the subgraph Gπ contains a unique simple path
from s to v that is also a shortest path from s to v in G.

Algorithm 30 Breadth-First Search

1: function BFS(G, s) ▷ s is the source
2: for all u ∈ V \ {s} do
3: u.color, u.δ, u.π ← white,∞,nil
4: s.color, s.δ, s.π ← gray, 0,nil
5: Q← ∅ ▷ initialize empty queue for vertices to visit
6: Enqueue(Q, s)
7: while Q ̸= ∅ do
8: u← Dequeue(Q)
9: for all v ∈ Γ(u) do

10: if v.color = white then
11: v.color← gray
12: v.δ ← u.δ + 1
13: v.π ← u
14: Enqueue(Q, v)
15: u.color← black

Breadth-First Search constructs π so that the predecessor subgraph Gπ = (Vπ, Eπ) is
a breadth-first tree rooted at s. Upon termination, v.δ = δ(s, v) for all v ∈ V . For
any vertex v reachable from s, the simple path in the breadth-first tree Gπ from s to
v corresponds to a shortest path (that is, a path containing the smallest number of
edges) from s to v in the original graph G.

Assuming that Breadth-First Search has computed a breadth-first tree Gπ, we can
print the shortest path from s to v using (the recursive) Algorithm 31.

Algorithm 31 Print Shortest Path

1: function PrintPath(G, s, v)
2: if v = s then
3: Print(s)
4: else if v.π = nil then
5: Print(“No path exists”)
6: else
7: PrintPath(G, s, v.π)
8: Print(v)

5.3 Depth-First Search

As its name implies, Depth-First Search searches “deeper” in the graph whenever
possible. Depth-First Search explores edges out of the most recently discovered vertex
v that still has unexplored edges leaving it. Once all of v’s edges have been explored, the
search backtracks to explore edges leaving the vertex from which v was discovered.
This process continues until all vertices that are reachable from the original source
vertex have been discovered. If any undiscovered vertices remain, then Depth-First
Search selects one of them as a new source, repeating the search from that source.
This process is repeated until every vertex has been discovered.2

Algorithm 32 Depth-First Search

1: function DFS(G)
2: for all u ∈ V do
3: u.color, u.π ← white,nil
4: T ← 0 ▷ global time variable, for timestamps
5: for all u ∈ V do
6: if u.color = white then
7: DFS-Visit(u) ▷ new tree in forest
8: function DFS-Visit(u)
9: u.color← gray ▷ u has just been discovered

10: T ← T + 1
11: u.d← T
12: for all v ∈ Γ(u) do ▷ explore each edge leaving u
13: if v.color = white then
14: v.π ← u
15: DFS-Visit(v) ▷ recursively visit v if it undiscovered
16: u.color← black ▷ blacken u; it is finished
17: T ← T + 1
18: u.f ← T

Since Depth-First Search always explores all vertices, we define the predecessor sub-
graph as Gπ = (V,Eπ), where

Eπ = {(v.π, v) | v ∈ V ∧ v.π ̸= nil}

It is a depth-first forest, comprising several depth-first trees.

Each vertex is initially white, is grayed when it is discovered in the search (Line 9),
and is blackened when it is finished, that is, when its neighborhood has been examined
completely (Line 16).

Each vertex u has two timestamps: the first, u.d, records when u is first discovered
(and grayed), and the second, u.f , records when the search finished examining u’s
neighborhood (and blackens u). For each vertex u ∈ V , we have

u.d, u.f ∈ {1, . . . , 2|V |} and u.d < u.f

since there is one discovery and one finishing event for each of the |V | vertices. u is
white before u.d, gray between u.d and u.f , and black after u.f .

2Although Breadth-First Search could proceed from multiple sources and Depth-First Search could
be limited to one source source, the approach here reflects how they are typically used. Breadth-
First Search usually serves to find shortest-path distances and the associated predecessor sub-
graph fro a given source, while Depth-First Search is often a subroutine in another algorithm.

8

Upon every call of DFS-Visit(u) in Line 7, a new depth-first tree is created, rooted at
u. In each call DFS-Visit(u), u is initially white. Lines 12–15 examine each vertex
v adjacent to u and recursively visit v if it is white.

The result depends on the order in which Line 5 examines the vertices and upon the
order in which Line 12 visits the neighbors of u. Usually, these different visiation orders
tend not to cause problems, because many applications can use any of those.

We call DFS-Visit(u) exactly once (either in Line 7 or recursively in Line 15) for each
vertex u, because we call it only if u.color = white, but then we immediately set
u.color = gray in Line 9. The loop in Lines 12–15 executes Θ(|Γ(u)|) times. So, the
total running time is Θ(|V |+ |E|).

Properties of the Depth-First Forest Gπ:

• v is a descendant of u ⇐⇒ v is discovered during the time in which u is gray

• discovery and finish times have parenthesis structure: if in DFS-Visit we
printed ‘(u’ when we discovered u and ‘u)’ when we finished u, then the printed
expression would be well formed in the sense that the parentheses are properly
nested

• for any two vertices u1 and u2, exactly one of the following conditions holds

• [u1.d, u1.f] ∩ [u2.d, u2.f] = ∅ ⇐⇒ neither is a descendant of the other

• [u1.d, u1.f] ⊂ [u2.d, u2.f] ⇐⇒ u1 is a descendant of u2

• [u1.d, u1.f] ⊃ [u2.d, u2.f] ⇐⇒ u2 is a descendant of u1

• v is a descendant of u ⇐⇒ at the time u.d that the search discovers u, there is a
path from u to v consisting entirely of white vertices

Classification of Edges in E:

• tree edges are edges (u, v) ∈ Eπ in the depth-first forest Gπ. (u, v) is a tree edge
if v was first discovered by exploring the edge (u, v) in Line 12.

• back edges are edges (u, v) /∈ Eπ connecting u to an ancestor v in the depth-first
forest Gπ.

• forward edges are edges (u, v) /∈ Eπ connecting u to a descendant v in the
depth-first forest Gπ.

• cross edges are edges (u, v) /∈ Eπ are all other edges.

Lemma 4. A directed graph is acyclic if and only if a Depth-First Search yields no
back edges. ◁

Theorem 5. In a undirected graph, a Depth-First Search yields only tree edges and
back edges. ◁

When during an Depth-First Search an edge (u, v) is first explored, the color of v yields
information about the edge:

• if v is white, then (u, v) is a tree edge
• if v is gray, then (u, v) is a back edge
• if v is black, then (u, v) is a

• forward edge if u.d < v.d
• cross edge if u.d > v.d

Observe that the gray vertices always form a linear chain of descendants corresponding
to the stack of active DFS-Visit invocations.

5.3.1 Topological Sort

A topological sort of a directed acyclic graph (“dag”) G = (V,E) is a linear ordering
of the vertices such that if G contains an edge (u, v), then u appears before v in the
ordering.

Algorithm 33 Topological Sort

1: function TopologicalSort(G)
2: call DFS(G) to compute the finish time v.f for each v ∈ V
3: as each vertex v is finished, insert it onto the front of a linked list L
4: return L

5.3.2 Strongly Connected Components

Definition 14 (Strongly Connected Component). A strongly connected compo-
nent of a directed graph G = (V,E) is a maximal set of vertices C ⊆ V such that for
every pair of vertices u, v ∈ C, both u ⇝ v and v ⇝ u, that is, u and v are reachable
from each other. ✍

Algorithm 34 uses the transpose of G, GT = (V,ET), where ET = {(u, v) : (v, u) ∈
E}. That is, ET consists of the edges of G with their directions reversed. Given an
adjacency-list representation of G, the time to create GT is Θ(V + E). The graphs G
and GT have exactly the same strongly connected components: u and v are reachable
from each other in G if and only if they are reachable from each other in GT.

The linear-time (i.e., Θ(V + E)-time) Algorithm 34 computes the strongly connected
components of a directed graph G = (V,E) using two depth-first searches, one on G
and one on GT.

Definition 15 (Component Graph). Suppose that G has strongly connected com-
ponents C1, . . . , Ck. The vertex set V SCC is {v1, . . . , vk}, and it contains one vertex vi
for each strongly connected component Ci of G. There is an edge (vi, vj) ∈ ESCC if G
contains a directed edge (x, y) for some x ∈ Ci and some y ∈ Cj .

Looked at another way, if we contract all edges whose incident vertices are within the
same strongly connected component of G so that only a single vertex remains, the
resulting raph is GSCC. ✍

Algorithm 34 Strongly Connected Components

1: function StronglyConnectedComponents(G)
2: call DFS(G) to compute the finish time v.f for each v ∈ V
3: create the transpose graph GT

4: call DFS(GT), but in Line 5, consider the vertices in order of decreasing u.f
5: return the depth-first trees of Gπ formed in Line 4

The Strongly Connected Components, defined in Definition 14 and the Component
Graph GSCC = (V SCC, ESCC), defined in Definition 15 have the following properties:

If Ci and Cj are two distinct Strongly Connected Components in a directed graph
G = (V,E),...

1. ...and ui, vj ∈ Ci and uj , vj ∈ Cj , and G contains a path ui ⇝ uj , then G cannot
also contain a path vj ⇝ vi, i.e. the Component Graph GSCC is acyclic.

2. ...and there is an edge (u, v) ∈ E with u ∈ Cj and v ∈ Ci, then Cj .f > Ci.f .

3. ...and suppose that Ci.f > Cj .f , then ET contains no edge (v, u) such that u ∈ Cj

and v ∈ Ci.

Property 1 implies that the Component Graph GSCC can be topologically sorted (see
Section 5.3.1). And in fact, Algorithm 34 visits the vertices of the Component Graph in
topologically sorted order, by considering vertices in the second depthfirst search (Line
4) in decreasing order of the finish times that were computed in the first depth-first
search (Line 2).

In Properties 2 and 3, the finish time of a Strongly Connected Component, C.f , refers
to the maximal finish time of any vertex in C as computed by Line 2 of Algorithm 34,
i.e.,

C.f := max
v∈C

(v.f)

Property 3 provides the key idea behind Algorithm 34: When the Depth-First Search of
GT in Line 4 of Algorithm 34 visits any Strongly Connected Component, any edges out
of that component must be to components that the search has already visited. Each
depth-first tree produced by Line 4, therefore, corresponds to exactly one Strongly
Connected Component of G.

Another way to see this is to consider the component graph (GT)SCC of GT. If we map
each strongly connected component visited in the second depth-first search to a vertex
of (GT)SCC, the second depth-first search visits vertices of (GT)SCC in the reverse of a
topologically sorted order.

5.4 Minimum Spanning Tree

Given a graph G = (V,E) with weight function w : E → R we want to find an acyclic
subset T ⊆ E such that T touches all vertices in V and

w(T) =
∑
e∈T

w(e)

that is, the total weight of the tree T is minimal. This T is called a minimum
spanning tree (MST) of G.

Conceptually, Kruskal’s algorithm (1956) is similar to the Strongly Connected Com-
ponents algorithm, while Prim’s algorithm (1957) resembles Dijkstra’s shortest-paths
algorithm. Both run in O(|E| log |V |) time.

The general idea is to build T by adding one edge e ∈ E at a time, such that e is
the lightest edge that does not create a cycle. Both Kruskal and Prim are greedy
algorithms (see 6.1), that is, in each step they make the choice that seems best at the
moment. Even though such a strategy does not generally yield an optimal solution,
for the MST problem one can prove that certain greedy strategies yield an optimal
solution.

Algorithm 35 Generic Minimum Spanning Tree

1: function Generic-MST(G,w)
2: A← ∅ ▷ invariant: A is part of a minimum spanning tree
3: while A is not a spanning tree do
4: find a safe edge e = (u, v) ▷ a safe edge maintains the invariant
5: A← A ∪ {e}

The strategy is given in Algorithm 35. The invariant used is that A is a subset of a
minimum spanning tree and a safe edge is an edge that maintains this invariant.

A cut of a graph G = (V,E) is a partition of V into two disjoint sets S and V \S. An
edge e ∈ E crosses the cut if one of its endpoints is in S and the other is in V \ S. A
cut respects a set of edges A if no edges in A cross the cut.

Theorem 6. Let A ⊆ E be included in a minimum spanning tree and (S, V \ S) be
a cut that respects A. Then a minimum-weight edge e crossing the cut (S, V \ S) is a
safe edge for A. ◁

9

Theorem 6 provides a rule for recognizing safe edges and is the key to why Algorithm 35
works. At any point in the execution, the graph GA = (V,A) is a forest and each of
the connected components of GA is a tree. Any safe edge e for A connects two distinct
components of GA, since A ∪ {e} must be acyclic.

The loop in Lines 3–5 of Algorithm 35 executes |V | − 1 times, because it finds one
of the |V | − 1 edges of a a minimum spanning tree in each iteration. Initially, when
A = ∅, there are |V | trees in GA and each iteration reduces that number by one, until
the forest contains only a single tree, upon which the method terminates.

Kruskal and Prim both use the following corollary of Theorem 6.

Corollary 7. Let A ⊆ E be included in a minimum spanning tree and let C =
(VC , EC) be a connected component (tree) of GA = (V,A). Then a minimum-weight
edge e connecting C to some other component in GA is a safe edge for A. ◁

Kruskal and Prim use a different, specific rule to determine a safe edge in Line 4 of
Algorithm 35. In Kruskal’s algorithm, A is a forest whose vertices are all those of the
given graph and the safe edge added is always a lowest-weight edge that connects two
distinct components. In Prim’s algorithm, A is a single tree and the safe edge added
is always a lowest-weight edge connecting the tree to a vertex not in the tree.

For Kruskal, we need the disjoint-set data structure:

• MakeSet(x) creates a set containing only the element x

• Find(x) returns the representative of the set containing x

• Union(x, y) joins the sets containing x and y into a single set

Algorithm 36 Kruskal

1: function Kruskal(G,w : E → R)
2: A← ∅
3: for all v ∈ V do
4: MakeSet(v)
5: sort E in non-decreasing order by w
6: for all (u, v) ∈ E in non-decreasing w-order do
7: if Find(u) ̸= Find(v) then
8: A← A ∪ {(u, v)}
9: Union(u, v)

Algorithm 37 Prim

1: function Prim(G,w : E → R, r)
2: T ← (∅, ∅) ▷ minimal spanning tree
3: for all v ∈ V (G) do
4: v.weight←∞ ▷ best known cost of connecting v to T
5: v.π ← nil ▷ u ∈ T such that (u, v) is the least-cost edge connecting v to T
6: r.weight← 0 ▷ r is the root of the spanning tree
7: while V (T) ̸= V (G) do ▷ while T does not span all vertices
8: find u /∈ V (T) such that u.weight is minimal
9: T ← T ∪ {u} ▷ add u to the spanning tree T

10: for all v ∈ Γ(u) \ V (T) do
11: if w(u, v) < v.weight then
12: v.weight← w(u, v)
13: v.π ← u

5.5 Single-Source Shortest Paths

Dijkstra’s algorithm is a greedy, label-setting method for nonnegative edge weights.
At each step it finalizes the closest unreached vertex and relaxes its outgoing edges,
yielding a time complexity of O((|V | + |E|) log |V |) with a binary-heap implementa-
tion.

Algorithm 38 Dijkstra

1: function Dijkstra(G,w : E → R≥0, s)
2: N ← ∅ ▷ nodes of G whose least-cost path from s is definitely known
3: for all v ∈ V (G) do
4: v.δ ←∞ ▷ best known cost from s to v
5: v.π ← nil ▷ node preceding v on the least-cost path from s
6: s.δ ← 0 ▷ s is the source
7: while N ̸= V (G) do ▷ while we do not know the least-cost path to all nodes
8: find u /∈ N such that u.δ is minimal
9: N ← N ∪ {u} ▷ add u to the nodes N

10: for all v ∈ Γ(u) \N do
11: if u.δ + w(u, v) < v.δ then
12: v.δ ← u.δ + w(u, v)
13: v.π ← u

Bellman-Ford algorithm is a dynamic-programming, label-correcting method that sup-
ports arbitrary (i.e. including negative) weights and detects negative-weight cycles. It
relaxes all edges in up to |V | − 1 passes for O(|V | × |E|) time and uses one extra pass
to check for cycles.

The Bellman-Ford equation:

δ(s, v) = min
(u,v)∈E

(δ(s, u) + w(u, v)) (10)

Algorithm 39 Bellman-Ford

1: function BellmanFord(G,w : E → R, s)
2: for all v ∈ V (G) do
3: v.δ ←∞
4: v.π ← nil
5: s.δ ← 0
6: for i = 1 to |V (G)| − 1 do
7: for all (u, v) ∈ E(G) do
8: if u.δ + w(u, v) < v.δ then
9: v.δ ← u.δ + w(u, v) ▷ applying Equation (10)

10: v.π ← u
11: for all (u, v) ∈ E(G) do
12: if u.δ + w(u, v) < v.δ then
13: return false ▷ negative-weight cycle detected
14: return true

6 Design Techniques

6.1 Greedy Algorithms

Greedy algorithms construct a solution by always choosing the option that looks best
at the moment. That is, they make a locally optimal choice in the hope that this choice
leads to a globally optimal solution.

At every step, we consider only what is best best in the current problem, not considering
the results of the subproblems.

The key ingredients of a problem for a greedy strategy to work:

1. Greedy-Choice: One can always arrive at a globally optimal solution by making
a locally optimal choice.

2. Optimal Substructure: An optimal solution to the problem contains within it
optimal solutions to subproblems.

It is natural to prove property 2 by induction: if the solution to the subproblem
is optimal, then combining the greedy choice with that solution yields an optimal
solution.

The proof pattern when designing a greedy algorithm is:

(i) Cast the problem as one where we make a greedy choice and are left with a
subproblem.

(ii) Prove that (at least) one optimal solution (not necessarily always the same one)
contains the greedy choice (Property 1).

(iii) Prove that the remaining subproblem is such that combining the greedy choice
with the optimal solution of the subproblem gives an optimal solution to the
original problem.

Remark 1 (Designing Greedy Algorithms).

• Inventing a greedy algorithm is easy (easy to come up with greedy choices)

• Proving it optimal may be hard (requires deep understanding of the structure of
the problem) ◀

Remark 2 (Greedy vs. Dynamic Programming). Greedy algorithms have many
similarities to dynamic programming. In particular, problems for which dynamic pro-
gramming works also need to have optimal substructure (Property 2).

One major difference is that instead of first finding optimal solutions to subproblems
and then making an informed choice, greedy algorithms first make a greedy choice (the
choice that looks best at the time) and then solve one resulting subproblem, without
bothering to solve all possible related smaller subproblems.

Dynamic programming is more general since it does not need the greedy-choice prop-
erty (Property 1). It usually looks at several subproblems and “dynamically” chooses
one of them to optain a global solution. ◀

6.2 Dynamic Programming

Dynamic programming is a method for solving (typically optimization or counting,
sometimes also probability) problems by decomposing them into (slightly smaller) sub-
problems that share subsubproblems. To make such a recursive approach efficient, the
optimal solutions to those subproblems are stored in an array/table of appropriate
size and dimension, so that each susubbproblem is solved just once. Instead of solv-
ing the problem top-down (recursively, with memoization) it is also possible (and often
slightly more efficient due to the overhead of recursion) to solve the problem bottom-up
(iteratively filling the table, starting with the base cases).

Not all problems can be solved with dynamic programming. They need to have certain
properties. The key ingredients of a problem for a dynamic programming method to
work are:

1. Optimal Substructure: An optimal solution to the problem contains within it
optimal solutions to subproblems.

2. Overlapping Subproblems: The subproblems share subsubproblems. A recur-
sive solution therefore revisits the same subsubproblem repeatedly.

Example 8 (Unweighted shortest/longest path). Given G = (V,E),

• find the length of the shortest path from u to v

• decompose u⇝ v into u⇝ w ⇝ v

• easy to prove that, if u⇝ w ⇝ v is minimal, then w ⇝ v is also minimal

• this is the optimal substructure property!

10

• find the length of the longest simple (i.e., no cycles) path from u to v

• we can also decompose u⇝ v into u⇝ w ⇝ v

• however, it is not the case that, if u⇝ w ⇝ v is maximal, then w ⇝ v is also
maximal, as can be shown by a counterexample ◀

Typical steps to solve a problem with dynamic programming:

1. Identify a problem as a dynamic programming problem: It should satisfy the
above properties.

2. State expression3: Choose a set of state variables so that each valid combination
represents a distinct subproblem. A good rule of thumb is to try to keep it as
simple as possible.

3. Formulate state and transition relationship: Derive a recurrence (transition) re-
lation that expresses the cost/value of a state in terms of smaller states, i.e.,
derive the solution to the main problem from (one of) the solutions to the
O(1), O(n), O(n2), . . . subproblems.

4. Identify the base case(s): Subproblem(s) that can’t be divided into any smaller
subproblems and don’t depend on any other subproblems for a solution.

5. Apply tabulation (bottom-up) or memoization (top-down).

Remark 3 (Dynamic Programming vs. Divide and Conquer). Both decompose a
problem into subproblems. But in divide-and-conquer the subproblems are disjoint,
that is, they do not share subsubproblems. The subproblems in divide-and-conquer are
also typically much smaller than the original problem, while in dynamic programming
the subproblems are typically only slightly smaller than the original problem (e.g.
reducing L(j) to L(j − 1)) ◀

Example 9 (Pingala). Using memoization, we can make the recursive algorithm
from Example 1 much more efficient.

Algorithm 40 Pingala, top-down with memoization

1: memo← [nil]× n ▷ memoization array of size n
2: function Pingala(n) ▷ Number of 1, 2-beats in n beats
3: if n ≤ 2 then
4: return n
5: if memo[n] = nil then
6: memo[n]← Pingala(n− 1) + Pingala(n− 2)
7: return memo[n]

Algorithm 40 runs in O(n) time. ◀

7 Complexity Theory

Definition 16 (Polynomial-Time Algorithm). A polynomial-time algorithm is
one whose worst-case running time T (n), on an input of size n bits, is O(nk) for some
constant k. ✍

you have n objects:

all pairs polynomial: Θ(n2)

all triples polynomial: Θ(n3)

all k-tuples for a fixed k polynomial: Θ(nk)

all subsets super-polynomial: Θ(2n)

all permutations super-polynomial: Θ(n!)

you have a graph over n vertexes:

all edges polynomial: Θ(n2)

all trees super-polynomial: Θ(nn−2)

all complete tours super-polynomial: Θ(n!)

all cuts super-polynomial: Θ(2n)

7.1 Decision Problems

Definition 17 (Problem). A problem Q is a binary relation between a set I of
instances and a set S of solutions. ✍

Definition 18 (Concrete Problem). A concrete problem Q is a problem where I
and S are the set of binary strings {0, 1}∗. ✍

For all practical purposes, instances and solutions can be encoded as binary strings
(i.e. mapped into {0, 1}∗).

Definition 19 (Decision Problem). A decision problem Q is a problem where the
set of solutions is S = {0, 1}. ✍

Example 10 (Primality Testing). Input: the binary representation of an integer n.
Output: true if n is prime, else false. ◀

We focus on decision problems only.

• An optimization problem is at least as hard as its corresponding decision prob-
lem

3Dynamic Programming problems are all about the state and its transition. This is the most basic
step which must be done very carefully because the state transition depends on the choice of
state definition you make. A state can be defined as the set of parameters that can uniquely
identify a certain position or standing in the given problem. This set of parameters should be
as small as possible to reduce state space.

• having a solution to the optimization gives an immediate solution to the
decision problem

• An optimization problem is not much harder than the corresponding decision
problem

• having a solution to the decision problem does not give an immediate solution
to the optimization problem

• but we can typically use the decision problem as a subroutine in some kind
of (binary) search to solve the corresponding optimization problem

Example 11 (Shortest Path).

• as an optimization problem:

G = (V,E), vsource, vdestination −→ (vsource, . . . , vdestination)

instance solution

• Input: a graph G, a source vertex, and a destination vertex
• Output: a sequence of vertexes

• as a decision problem:

G = (V,E), vstart, vend, δ −→ 1/0

instance solution

• Input: a graph G, a start vertex, an end vertex, and a path length (δ)
• Output: 1 if there is a path of (at most) the given length, else 0 ◀

7.2 Complexity Classes

Definition 20 (Class P). A concrete decision problem Q is polynomial-time solv-
able if there is a polynomial-time algorithm A that solves it. The complexity class P
is the set of all concrete decision problems that are polynomial-time solvable:

Q ∈ P ⇐⇒ ∃A that solves Q in polynomial time (worst case) ✍

Example 12. Primality Testing (2002, by Agrawal and Bachelor students Kayal and
Saxena), Context-free Language Parsing, Shortest-Path (decision variant). ◀

Definition 21 (Class NP). A concrete decision problem Q is polynomial-time
verifiable if there is a polynomial-time algorithm A such that for every instance
x ∈ I that has a true solution (Q(x) = 1), there is a certificate y of polynomial size
|y| = O(|x|c) for some constant c such that A(x, y) = 1. A(x, y) verifies in polynomial
time that y proves that Q(x) = 1. The complexity class NP is the set of all concrete
decision problems that are polynomial-time verifiable:

Q ∈ NP ⇐⇒ ∃A that verifies Q in polynomial time (worst case) ✍

Example 13. Longest-Path (decision variant), Vertex Cover, Satisfiability, Knapsack
(decision variant). ◀

Theorem 8. P ⊆ NP ◁

Proof. Given a polynomial-time solver for a problem, construct a verifier that ignores
the certificate and simply runs the solver. □

polynomial-time solvable =⇒ polynomial-time verifiable

polynomial-time verifiable
?

=⇒ polynomial-time solvable

Conjecture 9 (P vs. NP). P = NP? The prevailing opinion is P ̸= NP. ◁

7.3 Polynomial-Time Reductions

Definition 22 (Polynomial-Time Reduction). A problem Q is polynomial-time
reducible to another problem Q′ if there is a polynomial-time reduction from Q to
Q′. That means there is a polynomial-time algorithm that transforms every instance
q of Q into an instance q′ of Q′ such that the solution to q is true if and only if the
solution to q′ is true. ✍

instance of Q ? solution

instance of Q′ A solution

polynomial-time
algorithm

=

Example 14 (2-CNF-SAT). When every clause of φ has at most two literals, satisfi-
ability can be tested via an implication graph and two runs of Depth-First Search.
A formula is no satisfiable if and only if xi ⇝ ¬xi ⇝ xi for some i. Therefore
2-CNF-SAT ∈ P. ◀

11

7.4 NP-Hardness and NP-Completeness

Definition 23 (NP-Hard). A problem Q′ is NP-hard if all problems Q ∈ NP are
polynomial-time reducible to Q′. ✍

Definition 24 (NP-Complete). A problem Q′ is NP-complete if Q′ ∈ NP and Q′ is
NP-hard. ✍

Example 15 (Circuit Satisfiability (SAT)). was the first problem proven to be NP-
hard and, since SAT ∈ NP, it is also NP-complete. Many problems were then proved to
be NP-complete through polynomial reductions from SAT, for example Vertex Cover.

◀

Theorem 10. If Q′ is NP-hard and polynomial-time reducible to Q′′, then Q′′ is
NP-hard. ◁

Theorem 11. If Q′ is NP-hard and polynomial-time solvable, then P = NP. Most
people believe there is no such Q′. ◁

12

	Preface
	References
	Introduction
	Basics
	Incremental Algorithms
	Loop Invariant
	Correctness
	Divide-and-Conquer Algorithms
	Binary Search

	Sorting
	Insertion Sort
	Merge Sort
	Quick Sort (with Lomuto Partitioning)
	Heap Sort
	k-Smallest Element
	Overview of Sorting Algorithms
	Application

	Data Structures
	Stacks
	Queues
	Linked Lists
	Dictionaries
	Direct-Address Tables
	Hash Tables
	Chaining
	Open Addressing

	Binary Search Trees
	Traversals
	Basic Queries
	Updates
	Randomized Insertion
	Rotations
	Root Insertion

	Red-Black Trees

	Graphs
	Representations of Graphs
	Breadth-First Search
	Depth-First Search
	Topological Sort
	Strongly Connected Components

	Minimum Spanning Tree
	Single-Source Shortest Paths

	Design Techniques
	Greedy Algorithms
	Dynamic Programming

	Complexity Theory
	Decision Problems
	Complexity Classes
	Polynomial-Time Reductions
	NP-Hardness and NP-Completeness

