
Discrete Structures - Summary

Fabian Bosshard

July 29, 2025

Contents

Preface ii

References ii

1 Introduction 1

2 Propositional Logic 2
2.1 Syntax of propositional logic . 2
2.2 Semantics of propositional logic . 2
2.3 Logical Laws . 3
2.4 Normal forms . 4
2.5 Models and semantic conclusion . 5
2.6 Proof theory of propositional logic . 5

2.6.1 Short excursion into complexity theory 6
2.7 The resolution calculus . 8

3 Set Theory 9
3.1 Basic notions . 9

3.1.1 Cantor’s Paradise . 9
3.1.2 Zermelo/Fraenkel/Choice (ZFC) set theory 10
3.1.3 Laws derived from logic . 11
3.1.4 The Cartesian product . 11

3.2 Relations . 11
3.2.1 Representation of relations . 12
3.2.2 Properties of relations . 12
3.2.3 Equivalence relations . 13
3.2.4 Order relations . 13

3.3 Functions . 14

4 Combinatorics 15
4.1 Binomial Coefficient and Pascal’s Triangle 15
4.2 Urn Model . 15

4.2.1 Permutations (arrange) . 15
4.2.2 Variations (choose and arrange) . 16
4.2.3 Combinations (choose) . 16

4.3 Rules and strategies . 16
4.3.1 Inclusion-Exclusion Principle. 17
4.3.2 The Pigeonhole Principle . 18
4.3.3 Double counting . 19

4.4 Binomial Coefficients: Properties and Approximations 20
4.4.1 Symmetry . 20
4.4.2 Vandermonde Identity . 20
4.4.3 Binomial Theorem . 21
4.4.4 Approximations . 21

4.5 Special Counting Problems . 22
4.5.1 Relations . 22
4.5.2 Equivalence Relations . 22
4.5.3 Permutations with Cycles . 23

5 Graph Theory 24
5.1 Motivation . 24

5.2 Basic notions . 24
5.2.1 Basic notions for simple undirected graphs 25

5.3 Trees . 26
5.3.1 Counting trees: Cayley’s theorem 28

5.4 Some special graphs . 30
5.5 Euler Tours and Hamilton Cycles . 31
5.6 Planar Graphs . 33
5.7 Graph Colorings . 35

Preface

This document is an unofficial student-made summary of the course Discrete Structures
taught by Stefan Wolf in Spring 2025 at the Università della Svizzera italiana. It is
mainly based on [1]. It is not complete (e.g. Chapter 1 and 6 from [1] are missing) and
could contain errors. If you spot one, please report it to fabianlucasbosshard@gmail.com
or open an issue at https://github.com/fabianbosshard/usi-informatics-course-summaries.

This work is licensed under a Creative Commons “Attribu-
tion 4.0 International” license.

References

[1] Cecilia Boschini, Arne Hansen, and StefanWolf. Discrete Mathematics. vdf Hochschul-
verlag AG an der ETH Zürich, 2022. isbn: 9783728141101. doi: 10.3218/4110-1.
url: https://vdf.ch/discrete-mathematics-e-book.html.

https://search.usi.ch/courses/35270737/discrete-structures
https://search.usi.ch/people/eefbe656c9dfacf0e1a1e15bf8893bcb/wolf-stefan
https://www.usi.ch/it
mailto:fabianlucasbosshard@gmail.com
https://github.com/fabianbosshard/usi-informatics-course-summaries
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://doi.org/10.3218/4110-1
https://vdf.ch/discrete-mathematics-e-book.html

1 Introduction

Mathematics

“Philosophy”

L
o
g
ic

S
e
t
T
h
e
o
ry

Pillars of mathematics Matching Q and N

One can single out two pillars of today’s mathematics. Logic determines how to reason
within mathematics, i.e., what is considered a valid proof. Set theory describes the
objects we deal with.

Definition 1 (Countable set). A set S is called countable if there exists a injective
function f : S → N. If f is also surjective, then S is called countably infinite. ✍

The rational numbers are countable, as we can see if we arrange them in a grid:

Q :=
{a
b
∈ R | a ∈ Z, b ∈ Z \ {0}

}
Theorem 1 (Cantor’s diagonal argument). The set of real numbers in the interval
[0, 1] is uncountable. Thus the size of the set of real numbers is strictly greater than the
size of the set of natural numbers (in the sense that there is no bijective map between
the two):

|[0, 1]| = |R| > |N| = |Q|. ◁

Proof. (Contradiction) Assume there exists a bijection

f : N→ [0, 1].

Then every real number in [0, 1] can be expressed in its binary expansion, allowing us
to write:

f(1) = 0.b11b12b13b14 . . .
f(2) = 0.b21b22b23b24 . . .
f(3) = 0.b31b32b33b34 . . .
f(4) = 0.b41b42b43b44 . . .

...
. . .

where each bij is either 0 or 1.

Using Cantor’s diagonal method, we now construct a new number x in [0, 1] by flipping
the i-th bit of the binary expansion of f(i). Define x as

x = 0.c1c2c3c4 . . . with ci =

{
1, if bii = 0

0, if bii = 1
.

This guarantees that for every i ∈ N, the i-th digit of x is different from the i-th digit
of f(i).

Since x differs from each f(i) in at least the i-th digit, it follows that x cannot equal any
of the numbers in the list generated by f . This contradicts the original assumption that
f is a bijection since x is a member of [0, 1] that is not included in the enumeration.

Thus, there is no bijection between N and [0, 1], which implies that [0, 1] (and hence R)
is uncountable. □

1

2 Propositional Logic

Definition 2 (Proposition, Atom, Connective). A proposition is a sentence, expres-
sion, or formula which is either true or false, i.e., truth-definite. An atom or atomic
proposition is a basic proposition that is not composed of other propositions. A connec-
tive links (generally) two propositions to a new proposition. ✍

Connectives are full characterized by a truth table. As truth can take one of two values,
just like bits in a computer, there is a close relation between connectives and logical
gates.

2.1 Syntax of propositional logic

In syntax (of logic as well as of programming languages), we specify what a correct string
(formula, program) is, independently of its respective “meaning” of “function”.

Definition 3 (Syntax). Syntactically correct formulas ED with a set of atoms D :=
{A,B,C, . . . } are

• atomic formulas in D;

• if f and g are syntactically correct formulas, then also (¬f), (f ∧ g) and (f ∨ g)
are syntactically correct.

These are all the syntactically correct formulas. ✍

2.2 Semantics of propositional logic

Definition 4 (Assignment). A truth assignment is a mapping from the set of atoms
D to the set of truth values {0, 1}. The set of all truth assignments is denoted by A. A
truth assignment A : D → {0, 1} is a function that assigns a truth value to every atom.
This truth function is extended to all syntactically correct formulas by simply evaluating
the formula, based on the truth values for its atoms and the connectives used. ✍

Definition 5 (Semantic Behavior / Truth Vector). The semantic behavior or truth
vector of a proposition is the list of truth values for all possible assignments. ✍

This behavior or vector can be expressed completely in a truth table.

Definition 6 (Semantic Equivalence). Two formulas are semantically equivalent if
they have the same truth value for all assigments of their atomic formulas. We write
F ≡ G or F ⇔ G. ✍

We introduce the “truth values” 0 and 1 as syntactically correct formulas, abbreviating
(the shortest) unsatisfiable formula and tautology, respectively:

0 :≡ (A ∧ (¬A))

1 :≡ (A ∨ (¬A))

Definition 7 (Tautology, Unsatisfiable Formula). If a formula F is semantically equiv-
alent to 0, i.e. F ≡ 0, then F is called unsatisfiable. If a formula F is semantically
equivalent to 1, i.e. F ≡ 1, then F is called a tautology. ✍

Similarly, we introduce additional connectives as abbreviations:

A⊕B :≡ ((A ∧ (¬B)) ∨ ((¬A) ∧B))

A↔ B :≡ (A ∧B) ∨ ((¬A) ∧ (¬B))

Semantic equivalence is an equivalence relation: It partitions the set of all formulas into
disjoint subsets, groups of semantically equivalent formulas, the equivalence classes. It
structures the set of all syntactically correct formulas ED as visualized in the following
diagram:

2

ED

contains all tautologies

contains all unsatisfiable formulas

1

0

Number of Equivalence Classes The set of all syntactically correct formulas ED is
infinite. The number of equivalence classes, however, is finite (if the set of atoms, D,
is). Let n be the number of atoms in D, i.e. |D| = n. Then there are 2n different input
configurations, i.e. the truth table has 2n rows. As each row specifies an entry (0 or 1)
of the truth vector, there are

22
n

different semantic behaviors, i.e. equivalence classes (Section 3.2.3).

We express the semantic equivalence of two formulas through a property of one single
formula:

Theorem 2 (Relationship between semantic equivalence and tautology). Two formu-
las F and G are semantically equivalent (Def. 6), i.e. F ⇔ G, if and only if the formula
F ↔ G is a tautology (Def. 7). ◁

Proof. The formula F ↔ G ≡ (F ∧ G) ∨ ((¬F) ∧ (¬G)) is a tautology if and only if
F and G have the same truth values for all assignments. Thus, it is a tautology if and
only if F and G are semantically equivalent. □

Note that ↔ connects F and G syntactically, whereas ⇔ connects the two formulas
semantically.

2.3 Logical Laws

So far, we have been sticking closely to the syntax permitted by Def 3. We introduce
some simplifications of notation, motivated by equivalences that can be derived from
the logical laws:

• We allow the connectives (⊕,→,↔), as they are equivalent to formulas with basic
connectives.

• If brackets do not change the truth behavior, they can be dropped. We write

n∧
i=1

Ai ≡ A1 ∧ . . . ∧An,

n∨
i=1

Ai ≡ A1 ∨ . . . ∨An

• We introduce the priority rules (operator precedence):

¬, (∧,∨), (⊕,←,→,↔)

or if we want to be more extreme:

¬,∧,∨,⊕, (←,→),↔

Note that the distributivity for AND and XOR does not hold if the two connectives are
swapped (just as in arithmetic, there is a distributive law: a(b + c) = ab + ac, but not
a+ bc = (a+ b)(a+ c) in general). In fact, XOR and AND can be sees as addition and
multiplication of logic.

3

Equivalence Name

p ∧ true ≡ p
p ∨ false ≡ p

Identity laws

p ∨ true ≡ true

p ∧ false ≡ false
Domination laws

p ∨ p ≡ p
p ∧ p ≡ p

Idempotent laws

¬(¬p) ≡ p Double negation law

p ∨ q ≡ q ∨ p
p ∧ q ≡ q ∧ p

Commutative laws

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

Associative laws

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
p ∧ (q ⊕ r) ≡ (p ∧ q)⊕ (p ∧ r)

Distributive laws

¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q De Morgan’s laws

p ∨ (p ∧ q) ≡ p
p ∧ (p ∨ q) ≡ p

Absorption laws

p ∨ ¬p ≡ true

p ∧ ¬p ≡ false
Negation laws

p→ q ≡ ¬p ∨ q
p→ q ≡ ¬q → ¬p
p ∨ q ≡ ¬p→ q
p ∧ q ≡ ¬(p→ ¬q)
¬(p→ q) ≡ p ∧ ¬q
(p→ q) ∧ (p→ r) ≡ p→ (q ∧ r)
(p→ r) ∧ (q → r) ≡ (p ∨ q)→ r
(p→ q) ∨ (p→ r) ≡ p→ (q ∨ r)
(p→ r) ∨ (q → r) ≡ (p ∧ q)→ r

Implication laws

p↔ q ≡ (p→ q) ∧ (q → p)
p↔ q ≡ ¬p↔ ¬q
p↔ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q)
¬(p↔ q) ≡ p↔ ¬q

Biconditional laws

2.4 Normal forms

Definition 8 (Literal). If A ∈ D is an atom, then A and ¬A are called literals: A
literal is an atom or a negated atom. ✍

Definition 9 (Disjunctive Normal Form). A formula F is in disjunctive normal form
(DNF) if there exist literals Li,j such that

F =

n∨
i=1

(
mi∧
j=1

Li,j

)
= (L1,1 ∧ . . . ∧ L1,m1) ∨ . . . ∨ (Ln,1 ∧ . . . ∧ Ln,mn) ✍

Definition 10 (Conjunctive Normal Form). A formula F is in conjunctive normal
form (CNF) if there exist literals Li,j such that

F =

n∧
i=1

(
mi∨
j=1

Li,j

)
= (L1,1 ∨ . . . ∨ L1,m1) ∧ . . . ∧ (Ln,1 ∨ . . . ∨ Ln,mn) ✍

Note that, in these definitions, we put equalities (=), not merely equivalences (≡): The
normal forms are also syntactic notions.

Given a syntactically correct formula, one obtains its semantic behavior by writing
down the truth table. It is also possible to construct a syntactically correct formula that
reproduces a given truth table by considering either all the true rows (using Def 9) or
all the false rows (using Def 10). The DNF and CNF obtained for a given formula F
are syntactically different but, due to construction - we started out from the same truth
vector - semantically equivalent.

4

2.5 Models and semantic conclusion

Definition 11 (Model). Let F be a formula and A an assigment (Def 4) which renders
F true. Then A is a model of F . We write A |= F . ✍

Some of the properties of models are the following:

• Two formulas F and G are semantically equivalent, i.e. F ≡ G, if and only if they
have the same models:

A |= F ⇐⇒ A |= G

• A formula F is a tautology if and only if every assignment A is a model for F (F
is true in any “thinkable” world).

• A formula F is unsatisfiable if and only if it has no model.

Based on the notions of models, we define the one-sided variant of semantic equiva-
lence.

Definition 12 (Semantic Conclusion). G is a semantic conclusion of F1, . . ., Fn if
every model A of all the Fi is also a model of G. We say that F1, . . . , Fn semantically
implies G. We write {F1, . . . , Fn} ⊨ G or {F1, . . . , Fn} ⇒ G. ✍

Semantic conclusion is the one-sided variant of semantic equivalence. They relate just
like→ and↔ on the syntactic level. In particular, two formulas F andG are semantically
equivalent if and only if F is the semantic conclusion of G, and vice versa.

Note that the symbol |= has two meanings: It indicates semantic conclusion as well as
models.

Theorem 3 (Relationship between semantic implication and tautology). A set of for-
mulas {F1, . . . , Fn} semantically implies a formula G, i.e. {F1, . . . , Fn} |= G, if and only
if the formula

∧n
i=1 Fi → G is a tautology. ◁

We carefully distinguish between the syntactical and the semantic levels: The expression
{F1, . . . , Fn} ⊨ G relates the set of formulas {F1, . . . , Fn} semantically with the formula
G. The expression

∧n
i=1 Fi → G connects the two syntactically and yields another

syntactically correct formula. Only by demanding this formula to be a tautology does a
semantic criterion emerge.

Proof. The implication A→ B is equivalent to ¬A ∨B. Therefore,

n∧
i=1

Fi → G ≡ ¬ (F1 ∧ . . . ∧ Fn) ∨G

≡ ¬F1 ∨ . . . ∨ ¬Fn ∨G

This formula being a tautology means: If an assignment renders all Fi true - A (Fi) =
1 ∀i - then the assignment must also make G true. But that is exactly the definition of
a semantic conclusion. □

Remark 1. A formula F is a tautology if and only if F is a conclusion of 1, i.e.,
1 ⊨ F : F is a tautology if and only if the implication 1→ F is a tautology.

A formula F is unsatisfiable if and only if 0 is a conclusion of F , i.e., F ⊨ 0 : F is
unsatisfiable if the implication F → 0 is a tautology. ◀

2.6 Proof theory of propositional logic

The goal of a proof theory is to decide semantic questions such as

• Is a formula F a tautology?

• Is a formula F unsatisfiable?

• Does {F1, . . . , Fn} |= G hold?

5

In the end, this is always the same type of questions, that boils down to the question of
whether a certain formula is a tautology or not.

Example 1 (Tautology Problem of CNF). Given a formula F in CNF (Def 10), how
can we decide wether it is a tautology? Since F is a conjunction of subformulas Fi,
which are themselves disjunctions of literals:

F = (L1,1 ∨ . . . ∨ L1,m1)︸ ︷︷ ︸
=:F1

∧ . . . ∧ (Ln,1 ∨ . . . ∨ Ln,mn)︸ ︷︷ ︸
=:Fn

= F1 ∧ . . . ∧ Fn

The formula F is a tautology if and only if all Fi are. The Fi are tautologies if at
least one atom appears twice therein, once negated and once not negated. (Otherise, a
violating assignment can always be found.) ◀

Example 2 (Tautology Problem of DNF). Can we derive a similarly simple criterion
for a formula F in DNF (Def 9)?

F = (L1,1 ∧ . . . ∧ L1,m1)︸ ︷︷ ︸
=:F1

∨ . . . ∨ (Ln,1 ∧ . . . ∧ Ln,mn)︸ ︷︷ ︸
=:Fn

= F1 ∨ . . . ∨ Fn

Unfortunately, the problem does not ”localize” (reduce to similar questions indepen-
dently for the subformulas) in the same sense: The relation between subformulas is
important here. Clearly, what can always be done is a truth table. However, the size of
that grows exponentially with the number of different atoms in the formula. ◀

Relating DNF and CNF Is it easy to change from one normal form to the other,
for a formula F? No, but what we can do is to obtain the negation of F in the other
normal form in which F itself is given, using de Morgan’s law:

¬F = ¬
n∨

i=1

(
mi∧
j=1

Li,j

)
≡

n∧
i=1

(
¬

mi∧
j=1

Li,j

)
≡

n∧
i=1

(
mi∨
j=1

¬Li,j

)

As F being a tautology is equivalent to ¬F being unsatisfiable, the satisfiability problem
for a DNF can be solved analogously to the tautology problem of a CNF: They are both
simple. The other problems (satisfiability for CNF, tautology for DNF, change from
CNF to DNF and vice versa for some F) seem hard. Let us look at this is some more
detail.

Comparison of computational hardness Let us compare the hardness of the tau-
tology problems for CNF and DNF, respectively: If F is given in CNF, one merely has
to check the double occurrence of an atom (once positive, once negated) in each of the
subformulas. This can be done in essentially linear time, i.e., the number of steps being
upper-bounded by a linear function in the length of the formula, simply going through
the formula. On the other hand, in the case of F being a DNF, one has to write down
the entire truth table, containing 2l rows. The number of computational steps is thus
exponential in the length l, growing much faster. In a sense. the two problems are
opposite extremal cases of hardness. Let us look at that in some more depth.

2.6.1 Short excursion into complexity theory

P

NP

NPC

all computational problems

6

Complexity theory is about classifying computational problems by their computational
difficulty. The set P contains all problems that can be solved in polynomial time, i.e., the
number of computational steps being at most a polynomial function of the input size.
P is a subset of NP, containing all problems for which one can verify a given solution in
polynomial time, whereas the solution may not be found in polynomial time.

A subset of NP are the NP-complete problems (NPC): Problems in NPC are as hard
as any other problem in NP. That means that any problem in NP can be reduced to
any problem in NPC in polynomial time. Consequently, any problem in NPC can be
reduced to another problem in NPC in polynomial time. This means that NPC problems
can be used as indicators of simplicity for all NP problems: If you can solve one NPC
problem in polynomial time, then you can solve all of them. (In fact, you have then
shown P = NP = NPC, which would be an overly surprising result that makes you very
famous; most people believe that the three classes P, NP, and NPC are all different from
each other - no one has proven that so far, however.)

Example 3 (Elements of P). P contains

• the tautology problem for CNF;

• the (un)satisfiability problem for DNF.

Even more, these decision problems can be solved not only in polynomial but even in
linear time; they are among the simplest even among P problems. ◀

Example 4 (Elements in NPC). NPC contains

• the tautology problem for DNF;

• the satisfiability problem for CNF

• the problem to find a semantically equivalent DNF for a given CNF, and vice
versa.

The last follows from the first two: If we could find a G in CNF for any F in DNF
with F ≡ G in polynomial time, we could solve the tautology problem for a DNF in
polynomial time by first turning it into a CNF and then applying the criteria above. ◀

Real-life problems? Are problems in real life hard? Yes, they are, as one can see in
the following example.

Example 5 (Sudoku). Sudoku is an NPC problem, as it boils down to the satisfiability
of a CNF: As one has to find a solution satisfying all conditions on the rows, columns,
and subboxes, it is a problem of the form

(condition 1) ∧ (condition 2) ∧ . . . (1)

Each of these conditions can be satisfied in different ways:

condition i = way 1 ∨ way 2 ∨ way 3 ∨ . . .

This is a CNF; to find a solution is the same as proving satisfiability. The satisfiability
problem for a CNF is in NPC; so is Sudoku. ◀

Actually, this is a common structure of real-life problems. Usually there is a number of
necessary conditions yielding a formula of the form (1). Each condition can be met in
various ways, so the subformulas are disjunctions. Thus, one is usually looking for an
assignment satisfying a CNF.

7

2.7 The resolution calculus

Although there is no hope to solve satisfiability (SAT) for CNF formulas efficiently
always, we discuss here a calculus that can do it often.

Definition 13 (Resolution Step). Let C1, C2, and R be clauses. R is the resolvent of
C1 and C2 if there exists a literal L such that L is in C1 and ¬L is in C2 and R contains
all literals in C1 and C2 except of L and ¬L. In set notation:

R = C1\{L} ∪ C2\{¬L}.

The rationale is that C1 and C2 semantically imply R

{C1, C2} ⊨ R. ✍

Resolution does not merely show unsatisfiability but also yields an assignment if the
formula is satisfiable.

That is, if a formula is not unsatisfiable, then the resolution calculus leads us to a
satisfying assignment. A functional programming language directly based on resolution
calculus is PROLOG.

8

3 Set Theory

Let us turn to the second pillar of mathematics, namely, set theory. As mentioned in
the Introduction, all objects in mathematics are sets. For instance, the natural numbers
can be defined inductively, starting from the empty set, through never-ending formation
of new sets:

0 := ∅
1 := {0} = {∅}
2 := {0, 1} = {∅, {∅}}
...

n := {0, 1, . . . , n− 1}

3.1 Basic notions

A set is a collection of objects - where all these objects are sets themselves (remember:
all objects are). Thus, set theory is about a relation, called the element relation, among
sets.

Definition 14 (Element Relation). The relation “is an element of” relates an object
(set) x1 with a set A. One says “x is an element of A” or “x is in A” or “A contains x”
and writes

x ∈ A.

If x is not in A, one writes
x /∈ A or ¬(x ∈ A). ✍

3.1.1 Cantor’s Paradise

Georg Cantor is the founder of set theory. His definition of what a set is, and what
objects it can contain, was very liberal in the sense that a set was a collection of any
kind of objects with the only condition that these objects be distinguishable from each
other.

Definition 15 (Cantor’s “näıve” approach). Any collection of well-distinguished ob-
jects is a set. ✍

In this liberal definition, it is, in particular, not excluded that a set contains itself as a
member. Unfortunately, this possibility leads to a serious problem: Consider the set

M := {B | B /∈ B} .

Does M contain itself? If it does, it does not, according to the definition—a classical
antinomy: Näıve set theory crashes. This antinomy, which is due to the mathematician
and philosopher Bertrand Russell, was, by Russell himself, put as follows: A barber is a
man who shaves every man who does not shave himself. Does the barber shave himself?
Again, he does exactly when he does not.

That was the end of Cantor’s Paradise. The way out is a set of stricter rules about
what can be a set. It will still be the case that sets contain sets (there is nothing else,
after all), but with the new rules, there is no more such a thing as “the set of all sets”.
And in particular, it never occurs that a set contains itself. The most famous set of such
rules goes back to Ernst Zermelo and Abraham Fränkel (ZF), extended by the somewhat
mysterious “axiom of choice” (ZFC).

1It is common to label sets with capital letters and their elements with small letters - although,
again, also the lowercase-letter objects are sets.

9

3.1.2 Zermelo/Fraenkel/Choice (ZFC) set theory

is a set of axioms describing how sets can be formed. First, we introduce symbols from
predicate logic which we use as linguistic abbreviations.

Definition 16 (Quantifiers). The universal quantifier ∀ is used to express that a state-
ment holds for all objects of a certain kind. The existential quantifier ∃ expresses that
a statement holds for at least one object. ✍

Axiom 17 (Extensionality). Two sets are equal if they have the same elements:

∀A∀B (∀x (x ∈ A⇔ x ∈ B)⇒ A = B). ✍

While Axiom 17 states a sufficient condition, the necessity is logical: The logic of equality
states that if two objects are equal, they have the same properties.

Definition 18 (Predicate). A predicate on a set A is a function P : A→ {false, true}.
P can also be seen as a property that all x ∈ A have for which P (x) = true. ✍

Axiom 19 (Subsets from Predicates). Given a setA and a predicate P : A→ {false, true},
the collection

{x ∈ A | P (x)} := {x ∈ A | P (x) = true}
is another set. ✍

Definition 20 (Subset). A ⊆ B :⇐⇒ ∀x (x ∈ A⇒ x ∈ B) ✍

Theorem 4. If A ⊆ B and B ⊆ A, then A = B. ◁

Proof. Consequence of Definition 20 and Axiom 17. □

The existence of an empty set is usually postulated. One may also obtain it from any
non-empty set A using Axiom 19 with predicate x ̸= x:

∅ := {x ∈ A | x ̸= x}

Out of this semen alone, the whole rich zoo of mathematical objects blossoms.

Definition 21 (Intersection). x ∈ A ∩B :⇐⇒ x ∈ A ∧ x ∈ B ✍

Axiom 22 (Union). x ∈ A ∪B :⇐⇒ x ∈ A ∨ x ∈ B ✍

Definition 23 (Difference). x ∈ A \B :⇐⇒ x ∈ A ∧ x /∈ B. ✍

Definition 24 (Symmetric difference). x ∈ A△B :⇐⇒ (x ∈ A)⊕ (x ∈ B). ✍

A△B can also be written as (A \B) ∪ (B \A) or (A ∪B) \ (A ∩B).

The definitions above show the close relation between set theory and logic: Using the
logical connectives, we can define corresponding set operations.

The construction of the power set goes beyond that, and it is the most “powerful” of
the ZFC set-forming axioms, allowing for constructing in particular very large sets from
smaller ones.

Axiom 25 (Power Set). For every set A the power set

P(A) := {X | X ⊆ A}

is a set. In particular, it contains the empty set ∅ and A itself. ✍

The power set is also denoted 2A because the cardinality (i.e. the number of elements)
of the power set is

|P(A)| = 2|A|

if A is finite. This is since for each of the |A| elements of A, we can decide whether we
choose it or not for the subset: We have |A| binary choices, multiplying up to 2|A| total
choices, i.e., different subsets.

10

Definition 26 (Complement). Given a universe U , the complement of A ⊆ U is

A := U \A ✍

For a family {Ai}i∈I we define

x ∈
⋃
i∈I

Ai :⇐⇒ ∃i ∈ I (x ∈ Ai), x ∈
⋂
i∈I

Ai :⇐⇒ ∀i ∈ I (x ∈ Ai)

Let us finally look at this mysterious “axiom of choice”. Intuitively, it asks for a quite
unsurprising fact: If you have a family of all non-empty sets, then it is possible to choose
exactly one element out of each of the (non-empty) sets in the family. (Another way of
putting it is: The Cartesian product of a family of non-empty sets is non-empty.) What
is so mysterious about that? Although it is intuitive - why would the claimed not be
possible? - it has counterintuitive consequences, such as the Banach/Tarski paradox: A
unit ball can be cut into five peaces (subsets) that can be rearranged using only rotations
and translations, for obtaining two unit balls of the same size. This suggests that our
intuition is somehow inconsistent. In this sense, Banach/Tarski is only a paradox, and
not an antinomy: It appears weird to us, but it is not an intrinsic logical problem of
the theory. Which does not mean that it does not have consequences: For instance,
it is not possible to define a universal volume function. The reason why the axiom of
choice appears so innocent to us is that we apply it to finite families, whereas the strange
consequences come when you apply it beyond this, to infinite families. Major parts of
mathematics depend on that axiom, such as most of functional analysis, which is the
basis for quantum mechanics.

Axiom 27 (Choice). Given a family of sets, each containing at least one element, it
is possible to make a selection of exactly one object from each set. ✍

3.1.3 Laws derived from logic

We can derive many laws from their logical counterparts by replacing the connectives
by their set-theoretic counterparts in a logical law from Section 2.3: ∧ 7→ ∩, ∨ 7→ ∪,
¬ 7→ ·, true 7→ U , false 7→ ∅, ⊕ 7→ △, ≡ 7→=

3.1.4 The Cartesian product

In the 17th century, the early modern philosopher René Descartes introduced the Carte-
sian product to describe the location of points by their coordinates. Only later Cartesian
products were formalized in set theory employing ordered pairs.

Definition 28 (Ordered pair). (x, y) :=
{
{x}, {x, y}

}
✍

Definition 29 (Cartesian Product). A×B := { (a, b) | a ∈ A ∧ b ∈ B } ✍

The definitions of ordered pairs extends naturally to ordered lists of more than two
numbers, so called tuples. Given a finite index set, I = {1, . . . , k} we define the Cartesian
product of k sets as

×
i∈I

Ai :=
{
(a1, . . . , ak) | ∀i ∈ I, ai ∈ Ai

}

3.2 Relations

Definition 30 (Binary relation). A (binary) relation R from A to B is a subset of the
cartesian product of A and B, i.e. R ⊆ A×B. We write a R b for (a, b) ∈ R. ✍

Since they are sets, we can apply set calculus on relations.

Example 6. For the relations ≤≤≤, ≥≥≥, <<<, >>>, ===, ̸≠≠= we have

≤≤≤ ∩≥≥≥ = ===, ≤≤≤ △ ≥≥≥ = ̸≠≠=, <<< ⊆ ≤≤≤, >>> ⊆ ≥≥≥, ≤≤≤ = >>>, ≥≥≥ = <<< ◀

11

Example 7 (Divisibility, Modulo). An integer b is said to be divisible by another
integer a if there exists an integer c ∈ Z such that a · c = b, i.e.

a | b :⇐⇒ ∃c ∈ Z : a · c = b

It is a binary relation on Z, i.e. ||| ⊆ Z× ZZ× ZZ× Z. A binary relation on R can be reduced to a
relation on Z by interesection:

RZRZRZ = RRRRRR ∩ Z2Z2Z2

Congruence modulo m is defined as

a ≡ b (mod m) :⇐⇒ m | (a− b)

This is the same as saying that the integer division of each a and b by m yields the same
remainder. Each natural number m defines a congruence relation ≡m≡m≡m with the modulo
m. The intersection of two such congruence relations yields another one with the least
common multiple2 being the modulus:

≡m1≡m1≡m1 ∩ ≡m2≡m2≡m2 = ≡lcm(m1,m2)≡lcm(m1,m2)≡lcm(m1,m2) ◀

3.2.1 Representation of relations

Relations on finite sets A and B can be represented by either binary matrices or bipartite
graphs. In matrix representation, each row corresponds to an element in A and each
column to an element in B. The entry is then 1 if and only if the corresponding pair
(a, b) is in R. In the bipartite graph, the nodes on the left correspond to elements in A,
the ones on the right to elements in B. The nodes are linked if and only if (a, b) ∈ R.

In the special case of relations on a set A, i.e., where A = B holds, representations can
be made so that every element a of A is drawn only once, and an arrow connects a1

and a2 if and only if the pair (a1, a2) is in the relation. What results is a graph. It is,
however, not a simple graph since it can have loops, i.e., a node connected by itself via
an arrow. In some way, a graph is in fact nothing but (the representation of) a relation
on its vertex set.

3.2.2 Properties of relations

For a relation R ⊆ A×A:

• Reflexive: ∀a : (a, a) ∈ R. In matrix representation, the corresponding matrix has
all 1 on the diagonal. The representing graph has a loop for each of its nodes.

• Anti-reflexive: ∀a : (a, a) /∈ R. The diagonal of the corresponding matrix is 0, and
there are no loops in the associated graph.

• Symmetric: ∀a, b : (a, b) ∈ R⇒ (b, a) ∈ R. For finite sets the corresponding binary
matrix is symmetric. In the graph representation, it means that whenever there is
an arrow in one direction, there is also one in the inverse direction, i.e. the graph
is undirected.

• Anti-symmetric: ∀a, b : (a, b) ∈ R ∧ (b, a) ∈ R ⇒ a = b. In the matrix representa-
tion, whenever a non-diagonal position (i, j) holds a 1 , then the mirrored position
(j, i) must hold a 0. A 0 in both positions is possible.

• Transitive: ∀a, b, c : (a, b) ∈ R ∧ (b, c) ∈ R ⇒ (a, c) ∈ R. This is the central
property shared by equivalence and order relations.

2The least common multiple of two integers a and b is the smallest number c ∈ Z such that there
exist integers m,n ∈ Z with a · m = c = b · n. For relatively prime numbers a and b, the least
common multiple is simply their product, c = a · b.

12

3.2.3 Equivalence relations

Definition 31 (Equivalence relation). A relation ∼∼∼ on a set A is called an equivalence
relation if it is reflexive, symmetric, transitive. See 3.2.2. ✍

Definition 32 (Partition). A partition of a set A is a family of sets (Ai)i∈I such that⋃
i∈I

Ai = A and Ai ∩Aj = ∅ ∀i, j ∈ I, i ̸= j ✍

Theorem 5. Any equivalence relation yields a partition, and vice versa. More pre-
cisely, if ∼∼∼ is an equivalence relation on A, then the equivalence classes

[a] := {x ∈ A | x ∼ a} ⊆ A

are a partition of A. Conversely, if (Ai)i∈I is a partition of A, then the relation

x ∼ y :⇔ ∃i ∈ I : x ∈ Ai ∧ y ∈ Ai

is an equivalence relation. ◁

Example 8 (Congruence modulo m). The relation ≡m≡m≡m from Example 7 is an equiv-
alence relation on Z for any m ∈ Z with m equivalence classes. The set of equivalence
classes is denoted by Zm := Z/ ≡m= {[0], . . . , [m− 1]}. On Zm, we can define

[a] + [b] := [a+ b], [a] · [b] := [a · b],

yielding (Zm,+, ·), an algebraic structure called a ring. ◀

3.2.4 Order relations

Definition 33 (Partial Order). A relation ≼≼≼ on a set A is called a partial order if it
is reflexive, anti-symmetric, transitive. See 3.2.2. ✍

Example 9. Examples of partial orders include:

• On N,Z,R, ≤≤≤ and ≥≥≥ are partial orders, but not <<< or >>>, because they are not
reflexive.

• Divisibility ||| on N, but not on Z, because it is not reflexive there.

• The subset relation ⊆⊆⊆ on a power set P(B) is a partial order. ◀

In a poset (A,≼) an element x is

• a maximal element if ∄y ∈ A (y ̸= x ∧ x ≼ y)

• the greatest element if ∀y ∈ A, y ≼ x

Note that for a partial order, we do not require that every pair of elements is comparable.
This condition

∀x, y ∈ A : x ≼ y ∨ y ≼ x

is only required for a total order, also called linear order. For a total order, in the
directed graph representation, all nodes are connected.

13

3.3 Functions

Definition 34 (Function). A relation fff ⊆ A× B is a function(al relation) from A to
B, written f : A→ B, if it satisfies the properties

(i) ∀a ∈ A ∃b ∈ B : (a, b) ∈ f (existence of functional value)

(ii) (a, b) ∈ f ∧ (a, b′) ∈ f ⇒ b = b′ (uniqueness)

(i) and (ii) are sometimes expressed together as ∀a ∈ A ∃!b ∈ B : (a, b) ∈ f . ✍

The definition identifies a function with the corresponding set of pairs (a, b), i.e., the
graph of the function. The following notations are commonly used for (a, b) ∈ f :

f(a) = b, f : a 7→ b

Definition 35 (injective, surjective, bijective). Let f : A→ B.

• f is injective if f(a) = f(a′)⇒ a = a′

• f is surjective if ∀b ∈ B ∃a ∈ A, f(a) = b

• f is bijective if it is both injective and surjective ✍

The properties from Definition 35 can be used to introduce a relation on sets and compare
them with respect to their size (cardinality).

Definition 36 (Cardinality). For sets A,B:

A ≼≼≼ B :⇐⇒ ∃ injective f : A→ B, A ≈≈≈ B :⇐⇒ ∃ bijective f : A→ B ✍

The relation ≼ is a total order. The following theorem shows that ≼ has a property
resembling anti-symmetry (see 3.2.2).

Theorem 6 (Cantor/Schröder/Bernstein). If A ≼ B and B ≼ A, then A ≈ B. ◁

Proof. Imagine a park (= A) with a house (= B). Inside the house, there is a map of
the park. If we look closely, we see the house on the map again. This house on the map
in turn contains a map fo the park containing a house containing a map of the park,
and so on, ad infinitum. As the house is inside the park, i.e. B ⊆ A, there exists an
injective function g : B → A. On the other hand, the map of the park is inside the house,
i.e. A ⊆ B, and there exists an injective function f : A → B. We define a bijection
h : A → B as follows: Points in the set “park without house” (= A \ B) are mapped
to their correspondend an iteration level below. Points in the set “house without map”
(= B \A) are mapped to themselves. □

Theorem 7 (Cantor). For any set A we have A ≺ P(A); i.e. the power set of A is
strictly larger than A itself. ◁

Proof. Assume f : A → P(A) were surjective and define set B := {a ∈ A | a /∈
f(a)} ⊆ A. There is no b ∈ A with f(b) = B: if b ∈ B, then b /∈ f(b) = B; if b /∈ B,
then b ∈ f(b) = B. Hence f is not surjective. □

The results above open the door to ever larger infinities: R has the same size as P(N),
which in turn is dwarfed by P(R), and so on ad infinitum.

14

4 Combinatorics

is a collection of methods, principles, tools, techniques, and facts to count the size of
finite sets with some structure.

4.1 Binomial Coefficient and Pascal’s Triangle

Definition 37 (Binomial Coefficient).(
n

k

)
:=

n!

k!(n− k)!
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
(2)

with the base cases (
n

0

)
:=

(
n

n

)
:= 1 (3)

✍

We say “n choose k” referring to
(
n
k

)
, because it is the number of ways in which we can

choose k out of n elements (Unordered selection without repetition). In terms of sets,
it is the number of subsets of size k of a set of size n. Let S be an n-element set and fix
x ∈ S. A k-subset of S either excludes x (yielding

(
n−1
k

)
choices) or includes x (yielding(

n−1
k−1

)
choices, obtained by selecting the remaining k− 1 elements from S \ {x}). Hence

the number of k-subsets of S is
(
n−1
k

)
+
(
n−1
k−1

)
, yielding the recursion relation on the

right side in (2).

The value of
(
n
k

)
is completely determined by the right side in (2), as it can be computed

for any n and k by building up the following triangle employing the recursion relation
in (2), starting with the base cases in (3).

n = 0 1

n = 1 1 1

n = 2 1 2 1

n = 3 1 3 3 1

n = 4 1 4 6 4 1

n = 5 1 5 10 10 5 1

k = 0

k = 1

k = 2

k = 3

k = 4

k = 5

Algorithmically speaking, simply applying the recursion in (2) leads to very inefficient
computation. This is because the smaller subproblems to which the original problem
is reduced are solved repeatedly, even if they have already been computed. Computing
the coefficient would amount to adding up 1’s. The remedy when naive recursion fails
in this way is dynamic programming: filling a table with intermediate results (in our
case, the triangle) to avoid redundant computations.

4.2 Urn Model

4.2.1 Permutations (arrange)

Arrangement without repetition. The number of possibilities to arrange n distinct
elements is

Pn = n! (4)

Arrangement with repetition. The number of ways to arrange n repeated elements
that are of l distinct groups with multiplicities m1, . . . ,ml is

Pm1,...,ml =

(∑l
i=1 mi

)
!∏l

i=1 (mi!)
=

n!

m1! · · ·ml!
(5)

15

4.2.2 Variations (choose and arrange)

Ordered selection with repetition. After each draw, the element is put back. For
each of the k draws there are n choices, so the number of k-tuples is

V
n
k = nk (6)

Ordered selection without repetition. Elements once drawn are not put back.
The number of k-tuples is

V n
k =

n!

(n− k)!
=: nk (7)

4.2.3 Combinations (choose)

Unordered selection without repetition. Here we simply choose k elements out
of n without caring for order, hence the number of combinations is

Cn
k =

n!

k! · (n− k)!

(2)
=:

(
n

k

)
(8)

Unordered selection with repetition. Here we choose k elements from n elements,
but we are allowed to choose the same element multiple times. This is equivalent to
putting k indistinguishable balls into n distinguishable boxes, where each box can hold
any number of balls. We can think of the k balls as k stars, and the n − 1 dividers
between the boxes as n− 1 bars:

⋆ ⋆ · · · ⋆
∣∣ ⋆ · · · ⋆

∣∣ · · · ∣∣ ⋆ · · · ⋆

The combinations are characterized merely by the order of the stars and bars, so the
number is given by the number of ways to arrange k indistinguishable stars and n − 1
indistinguishable bars (Arrangement with repetition).

C
n
k =

(n+ k − 1)!

k! · (n− 1)!︸ ︷︷ ︸
=̂Pk,n−1

=

(
n+ k − 1

k

)
︸ ︷︷ ︸

=̂Cn+k−1
k

(9)

It is also equivalent to distributing k indistinguishable balls into k+n−1 distinguishable
spots, where each spot can hold at most one ball. This is the same as choosing k spots
from n+ k − 1 available spots (Unordered selection without repetition).

4.3 Rules and strategies

When faced with a counting problem, it is often possible to count parts of the set using
the standard urn models (4.2). What remains is then the problem of composing the
partial solutions. We recall some basic principles.

Sum Rule. For a family (Ai)i=1,...,n of mutually disjoint sets,∣∣∣∣∣⋃
i

Ai

∣∣∣∣∣ =∑
i

|Ai|

Product Rule. For a family (Ai)i=1,...,n of sets (may not be disjoint),∣∣∣∣×
i

Ai

∣∣∣∣ =∏
i

|Ai|

Equality Rule. Finite sets in bijection have the same number of elements.

16

4.3.1 Inclusion-Exclusion Principle.

We generalize the Sum Rule to sets that are not mutually disjoint.

Theorem 8 (Inclusion/Exclusion). For a family (Ai)i=1,...,n of sets (may not be dis-
joint), ∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ =
n∑

r=1

(−1)r−1
∑

1≤i1<···<ir≤n

∣∣∣∣∣
r⋂

k=1

Aik

∣∣∣∣∣ (10)

The outer sum runs over all possible sizes r of intersections, from 1, i.e., the single sets,
to n, i.e., the intersection of all sets. Therefore, for r = 1, the inner sum contains n
terms of the form |Ai|, and for r = n, it contains only one term, |A1 ∩ . . . ∩An|. In
general, the inner sum contains

(
n
r

)
terms, as it runs over all possible r-fold intersections

of n sets, i.e. all possible ways of choosing r sets out of n sets (Unordered selection
without repetition). ◁

Proof. Induction over n.

(i) Base case. The union of two sets (n = 2), disjoint or not, is of size

|A1 ∪A2| = |A1|+ |A2| − |A1 ∩A2|

The rationale is: If we simply add the two sizes, then the “overlap”, i.e., the
elements that are in both sets, are counted twice; hence, we have to “remove them
once”. ✔

(ii) Induction hypothesis. Assume (10) holds for the union of n sets, for some n ∈ N.

(iii) Induction step. Consider a union of a family of (n+1) sets - of which we single
out the (n+ 1)th set.

∣∣∣∣∣
n+1⋃
i=1

Ai

∣∣∣∣∣ =
∣∣∣∣∣
(

n⋃
i=1

Ai

)
∪An+1

∣∣∣∣∣ (i)
=

∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣+ |An+1| −

3.1.3
= |⋃n

i=1(Ai∩An+1)|︷ ︸︸ ︷∣∣∣∣∣
(

n⋃
i=1

Ai

)
∩An+1

∣∣∣∣∣ (11)

(ii)
=

n∑
r=1

(−1)r−1
∑

1≤i1<...<ir≤n

∣∣∣∣∣
r⋂

k=1

Aik

∣∣∣∣∣+ |An+1|

−
n∑

r=1

(−1)r−1
∑

1≤i1<...<ir≤n

∣∣∣∣∣
r⋂

k=1

(Aik ∩An+1)

∣∣∣∣∣ (12)

=

n∑
k=1

|Ak|+
n∑

r=2

(−1)r−1
∑

1≤i1<···<ir≤n

∣∣∣∣∣
r⋂

k=1

Aik

∣∣∣∣∣+ |An+1|

−
n∑

r=1

(−1)r−1
∑

1≤i1<···<ir≤n

∣∣∣∣∣
(

r⋂
k=1

Aik

)
∩An+1

∣∣∣∣∣ (13)

=

n+1∑
k=1

|Ak|+
n+1∑
r=2

(−1)r−1
∑

1≤i1<···<ir≤n

∣∣∣∣∣
r⋂

k=1

Aik

∣∣∣∣∣
+

n+1∑
r=2

(−1)r−1
∑

1≤i1<···<ir−1≤n

∣∣∣∣∣
(

r−1⋂
k=1

Aik

)
∩An+1

∣∣∣∣∣︸ ︷︷ ︸
=
∑

1≤i1<···<ir−1≤n
ir=n+1

|⋂r
k=1

Aik |

(14)

=

n+1∑
r=1

(−1)r−1
∑

1≤i1<···<ir≤n+1

∣∣∣∣∣
r⋂

k=1

Aik

∣∣∣∣∣ (15)

Note that we have used (i) in (11). Going from (11) to (12), we have applied (ii)
twice; to

∣∣⋃n
i=1 Ai

∣∣ as well as
∣∣⋃n

i=1 (Ai ∩An+1)
∣∣. In (12), we split off the case

r = 1 from the first sum, yielding (13). In order to obtain (14) from (13), the
index r in the last term was shifted and the emerging 1/(−1) was taken in front of
the sum. Finally, to obtain (15) from (14), the terms containing ir = n + 1 were
combined with the terms not containing ir = n + 1 and

∑n+1
k=1 |Ak| was absorbed

into the resulting sum as r = 1. ✔

This concludes the proof of the Inclusion/Exclusion Theorem. □

17

Example 10 (Opera). During an opera with n guests, all the coats in the cloakroom
get disordered, and every guest gets back a random coat afterwards. We want to find
the probability that at least one guest gets back their own coat. If no guest receives
their own coat, the corresponding permutation is fixed-point free.

We denote the set containing all permutations with at least one fix-point as A. We can
express this set as a union of sets Ai, where Ai is the set of permutations for which i is
a fixed point (there can be other fixed points). Then,

A =

n⋃
i=1

Ai

and using the Inclusion/Exclusion principle, we can compute the size of A. At first sight
it might seem unwise to reduce counting a single set to counting an exponential number
of sets. Luckily, many of these sets have the same size, which is easy to compute and
the number of sets in such groups is easy to determine as well.

The size of Ai is given by the number of permutations of the remaining n− 1 elements,
which is (n− 1)!. Similarly, the size of r-fold intersections of the sets Ai is given by the
number of permutations of the remaining n− r elements, which is (n− r)!.

As mentioned in Theorem 8, the number of distinct r-fold intersections is given by
(
n
r

)
.

So,

|A| =

∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =
n∑

r=1

(−1)r−1
∑

1≤i1<···<ir≤n

∣∣∣∣∣
r⋂

k=1

Aik

∣∣∣∣∣
=

n∑
r=1

(−1)r−1

(
n

r

)
(n− r)!

= n!

n∑
r=1

(−1)r−1

r!

The number of fixed-point free permutations is then

#FPFP(n) = n!− |A| = n!

n∑
r=0

(−1)r

r!

where #FPFP(n) denotes the number of fix-point free permutations of size n. For large
n, we have #FPFP(n) ≈ n!

e
. The probability that at least one guest receives their own

coat is thus given by

P(at least one guest receives their own coat)

= 1− P(no guest receives their own coat)

= 1− #FPFP(n)

n!
= 1−

n∑
r=0

(−1)r

r!

n→∞−−−−→ 1− 1

e

What is remarkable is that the probability quickly converges to a constant value that is
independent of the number of guests. ◀

4.3.2 The Pigeonhole Principle

“When n objects are distributed among k boxes with k < n, at least one box contains
at least two objects.”

Theorem 9 (Pigeonhole Principle). If a set of n objects is partitioned into k < n sets,
then at least one of these sets contains at least⌈n

k

⌉
objects. ◁

Proof. Contradiction. Suppose that all sets in the partition have at most
⌈
n
k

⌉
− 1

objects. Then the total number of objects is at most k
(⌈

n
k

⌉
− 1
)
, which is smaller than

n because

k
(⌈n

k

⌉
− 1
)
< k

((n
k
+ 1
)
− 1
)
= k

(n
k

)
= n

□

18

Proposition 10 (Erdős-Szekeres). A sequence of m2 + 1 distinct numbers contains a
monotonic subsequence of length m+ 1, and this bound is thight. ◁

Proof. Contradiction. Consider a sequence of m2 + 1 elements

(a1, . . . , am2+1)

and assume that the longest subsequence has length l ≤ m. To each element ai, as-
sign a pair (ci, di) ∈ N2 representing the length of the longest monotonically increas-
ing/decreasing subsequence starting with (and including) ai. By the assumption, we
have ci, di ≤ m ∀i ∈ {1, . . . ,m2 + 1}. Thus, there are at most m2 (Ordered selection
with repetition) possible different ordered pairs (ci, di). By the Pigeonhole Principle3,
at least two elements ai and aj must have the same pair (c, d). We can distinguish two
cases:

(i) ai ≤ aj ⇒ ci
E
> cj

(ii) ai ≥ aj ⇒ di
E
> dj

In both cases, (i) and (ii), the assumption leas to a contradiction. Hence, the longest
monotonic subsequence must have length l ≥ m + 1. The bound is also tight, as it is
easy to construct a sequence of length m2 of which the longest monotonic subsequence
has length only m. □

4.3.3 Double counting

A relation S ⊆ A×B can be counted “row-wise” or “column-wise”:

|S| =
∑
a∈A

|{b | (a, b) ∈ S}| =
∑
b∈B

|{a | (a, b) ∈ S}|

Example 11 (Average Number of Divisors). We want to find the average number of
divisors of numbers up to n. We introduce function counting the number of divisors of
k:

ν(k) := |{l > 0 | l divides k}|

i.e. ν(1) = 1, ν(2) = 2, ν(3) = 2, ν(4) = 3, ν(5) = 2, ν(6) = 4, ν(7) = 2, etc.
Furthermore, for every prime number p, we obtain ν(p) = 2. For a given number n, we
are interested in calculating

1

n

n∑
k=1

ν(k)

Summing up the values of ν(k) is equivalent to counting the dots in the left image
column by column.

k

l

1 2 3 4 5 6 7
. . . n

1

2

3

4

5

6

7

...

n

x
0

1/1

1

1/2

2

1/3

3 4 5 6 7

...

1/n

. . . n

1

x

1

x+ 1

Whereas the columns have a irregular pattern, the rows are very regular: Every second
number is even, every third is divisible by three, etc. In particular, the number of points

3The m2 possible pairs correspond to the holes and the m2 + 1 elements of the sequence to the
pigeons.

19

within each row is given by
⌊
n
k

⌋
: The fraction n

k
is rounded to the next smaller integer

value. Replacing the sum over columns by a sum over rows, we obtain

1

n

n∑
k=1

ν(k) =
1

n

n∑
l=1

⌊n
k

⌋

Now, we want to estimate how this number grows with n. Note that n
l
− 1 ≤

⌊
n
l

⌋
≤ n

l
.

Therefore, we can bound the average as(∑
l=1

1

l

)
− 1 ≤ 1

n

n∑
l=1

⌊n
l

⌋
≤

n∑
l=1

1

l

Thus, we require bounds on the sum
∑n

l=1 1/l. As shown in the image on the right, we
can approximate with functions and integrate to obtain the area below the graph.

The upper bound is then

n∑
l=1

1

l
≤ 1 +

∫ n

1

1

x
dx = 1 + ln(n)

where ln(·) is the natural logarithm. Similarly, we obtain the lower bound

n∑
l=1

1

l
≥
∫ n

0

1

x+ 1
dx = ln(n+ 1) ≥ ln(n)

Putting all this together, the average of the number of divisors for numbers between 1
and n can be estimated as

ln(n)− 1 ≤ 1

n

n∑
l=1

⌊n
l

⌋
≤ ln(n) + 1 ◀

4.4 Binomial Coefficients: Properties and Approximations

Recall the definition of the Binomial Coefficient (Definition 37).

4.4.1 Symmetry

The binomial coefficient reflects the symmetry of the Pascal triangle as(
n

k

)
=

n!

k!(n− k)!
=

n!

(n− k)!k!
=

(
n

n− k

)
(16)

4.4.2 Vandermonde Identity

Suppose an n-element set is partitioned into a red part of size r and a blue part of size
n− r:

r n − r

t k − t

n

k

The number of possibilities to choose k elements such that t are red and k − t is the
product of the number of ways to choose t red elements from the red part and k− t blue
elements from the blue part: (

r

t

)
·

(
n− r

k − t

)

20

The total number of possibilities to choose k elements from the n-set is then the sum
over all possible values of t: (

n

k

)
=

k∑
t=0

(
r

t

)
·

(
n− r

k − t

)
(17)

We set
(
n
k

)
= 0 whenever k > n or k < 0. Equation (17) is known as the Vandermonde

identity.

4.4.3 Binomial Theorem

Theorem 11 (Binomial Theorem). For all x, y ∈ R and n ∈ N one has

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k (18)

◁

Special choices of (x, y) in (18) give useful corollaries of Theorem 11:

If we set x = y = 1, we obtain the sum over one row in Pascal’s triangle (18a). This is
equal to the number of all subsets of an n-set and thus the size of the power set. Another
interesting case is x = −1 and y = 1, which gives the alternating sum over one row in
Pascal’s triangle (18b).

x = y = 1 =⇒
n∑

k=0

(
n

k

)
= 2n (18a)

x = −1, y = 1 =⇒
n∑

k=0

(−1)k
(
n

k

)
= 0 (18b)

Remark 2 (Parity of bit strings). Equation (18b) shows that, for every n, the number
of even-parity n-bit strings (an even number of ones) equals the number of odd-parity
strings. When n is odd this is witnessed by the involution that flips every bit, w 7→ w. For
even n the equality follows algebraically from the vanishing alternating sum above. ◀

4.4.4 Approximations

Exact evaluation of
(
n
k

)
can be expensive for large instances. Simple bounds follow

directly from the factorial definition (Definition 37, Equation (2)). Rearranging the
factors in (2) gives(

n

k

)
=

n!

k!(n− k)!
=

∏k−1
i=0 (n− i)∏k−1
i=0 (k − i)

=

k−1∏
i=0

n− i

k − i
≥

k−1∏
i=0

n

k
=
(n
k

)k
How much bigger can

(
n
k

)
be than (n/k)k? Consider the following ratio:(

n
k

)(
n
k

)k =

∏k−1
i=0 (n− i)∏k−1

i=0 n︸ ︷︷ ︸
≤1

· kk∏k−1
i=0 (k − i)︸ ︷︷ ︸

≤ek

≤ ek

To upper bound the second part, we used the expansion of the exponential. One sum-
mand is less than the entire series.

Summarizing this we obtain the bounds:(n
k

)k
≤

(
n

k

)
≤
(n
k

)k
· ek (19)

A sharper estimate uses Stirling’s formula n! ≈
√
2πn

(
n
e

)n
to estimate the factorial and

can thus be used to estimate the binomial coefficient:(
n

k

)
=

n!

k!(n− k)!
≈ 1√

2π

√
n√

k(n− k)

(n
e

)n (e
k

)k (e

n− k

)n−k

≈ nn

kk(n− k)n−k
=

1(
k
n

)k (n−k
n

)n−k
=

(
1(

k
n

)k/n (n−k
n

)(n−k)/n

)n

21

In the last two steps we merely reformulate the expression in a form that turns out to
yield some insight later.

Now define x := k/n. Thus, (n − k)/n = 1 − x, and we can write the estimate above
as (

n

k

)
≈
(
xx(1− x)1−x)−n

= 2n(−x log2 x−(1−x) log2(1−x))

Further, we introduce the function

h(x) := −x log2 x− (1− x) log2(1− x)

The function h is symmetric about x = 1
2
, attains its maximum 1 there, and vanishes

at the endpoints x = 0 and x = 1.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

h
(x
)

All this new formalism yields the estimate

log2

(
n

k

)
≈ n · h(x)

The function h plays an important role in information theory.

4.5 Special Counting Problems

4.5.1 Relations

A relation R on a set S is a subset of the Cartesian product S × S (Section 3.2, Defini-
tion 30). The number of relations on a set S of size n is given by:

#R = |P(S × S)| = 2|S×S| = 2n
2

(20)

because each element can either be in the relation or not (Ordered selection with repe-
tition).

4.5.2 Equivalence Relations

Let S be an n-element set. We want to find the number of equivalence relations on S,
i.e. the number of partitions of S into non-empty blocks (Bell number Bn). Instead of
counting the equivalence relations directly, we first want to find the number of partitions
of S into exactly k non-empty blocks (Stirling number of the second kind Sn,k). We can
separate an element s ∈ S and distinguish two cases:

1. s is in its own set and therefore adds a block by itself. Then we have to find a
k − 1 partition of the remaining n− 1 elements.

2. s is in a set containing also other elements. Imaginge the remaining n−1 elements
are partitioned into k sets. Then we could add s to any of those k sets.

This gives the recursion
Sn,k = Sn−1,k−1 + k · Sn−1,k (21)

with base cases S0,0 = 1, Sn,0 = 0, and Sn,n = 1. The total number of equivalence
relations is thus

Bn :=

n∑
k=0

Sn,k (22)

which does not have a closed formula.

22

4.5.3 Permutations with Cycles

A permutation is a bijective map

π : {1, . . . , n} → {1, . . . , n}

A common notation for permutations is

π =

(
1 · · · n

π(1) · · · π(n)

)
A fixed point is an element i with π(i) = i.

Let S be an n-element set. We want to find the number of permutations of S with
exactly k cycles (unsigned Stirling number of the first kind Sn,k). We can separate an
element s ∈ S and distinguish two cases:

1. s is a fixed point and therefore adds a cycle by itself. Then we have to find a
permutation of the remaining n− 1 elements with k − 1 cycles.

2. s is in a cycle containing also other elements. Imaginge the remaining n−1 elements
are permuted into k cycles. Then we could put s at n − 1 positions, essentially
after each of the existing elements (independent of which cycle they are in).

This gives the recursion

Sn,k = Sn−1,k−1 + (n− 1) · Sn−1,k (23)

with base cases S0,0 = 1, Sn,0 = 0, and Sn,n = 1.

23

5 Graph Theory

5.1 Motivation

graphs are useful models for many discrete problems, because they allow to focus the
analysis on specific relations between objects

5.2 Basic notions

Definition 38 (Graph). A graph G = (V,E) consists of

• a non-empty, finite vertex set V , i.e. 0 < |V | = n <∞.

• an edge-set E ⊆ V × V : E is a relation on V . ✍

This definition allows for loops, but not for more than two edges connecting the same
pair of nodes. Graphs not having this limitatation are called multigraphs.

Definition 39 (Undirected graph). A graph G is undirected if

(u, v) ∈ E ⇔ (v, u) ∈ E ✍

In this case, edges edges are sometimes taken to be unordered sets (instead of ordered
pairs): e = {u, v}. When an undirected graph is drawn, a single line is normally drawn
between u and v (instead of a pair of arrows).

Definition 40 (Simple graph). A graph G is called simple if it does not contain loops:

✍

Definition 41 (Neighbourhood). For a vertex v ∈ V we call the set

Γ(v) := {w ∈ V | (v, w) ∈ E}

the neighbourhood of v:

v

✍

Definition 42 (Degree). The number of edges towards a node v is called the in-degree
deg−(v). The number of from a node v is called the out-degree deg+(v). For undirected
graphs the number of edges ending in a node v is simply called the degree deg(v). ✍

In a directed graph, any ingoing edge of a node is an outgoing edge of another node.
Further, any edge is an ingoing and an outgoing edge for some node. Thus we obtain
for directed graphs the following equation:∑

v∈V

deg−(v) =
∑
v∈V

deg+(v) = |E|

Lemma 12 (Handshaking). Let G = (V,E) be an undirected graph, where V is the
vertex set and E the edge set. Then∑

v∈V

deg(v) = 2|E| ◁

A consequence of Lemma 12 is that in every finite undirected graph, the number of
vertices with odd degree is even.

Example 12 (Party). If people shake hands at a party, the number of people who
shake an odd number of other people’s hands is even. ◀

24

5.2.1 Basic notions for simple undirected graphs

Definition 43 (Walk). A v1-vl-walk with length l is a sequence of vertices w =
(v1, . . . , vl) with

(vi, vi+1) ∈ E ∀i ∈ {1, . . . , l − 1} ✍

Definition 44 (Trail). A v1-vl-trail is a v1-vl-walk for which all edges are distinct. ✍

Definition 45 (Path). A v1-vl-path is a v1-vl-walk for which all vertices (and therefore
also all edges) are distinct:

v1 v2 v3
. . .

vl−1 vl
✍

Definition 46 (Circuit). A circuit is a closed trail (Def 44), i.e. a sequence of vertices
c = (v1, . . . , vl) with

(vi, vi+1) ∈ E ∀i ∈ {1, . . . , l − 1} and (vl, v1) ∈ E ✍

Definition 47 (Cycle). A cycle is a closed path (Def 45), i.e. a circuit where all
vertices are distinct. ✍

Definition 48 (Subgraph). The pair G′ = (V ′, E′) is a subgraph of G = (V,E) if

V ′ ⊆ V E′ ⊆ E E′ ⊆ V ′ × V ′ ✍

Given a vertex set V ′ ⊆ V , the subgraph of G induced by V ′, denoted by G[V ′], is the
subgraph of G with vertex set V ′ and all possible edges which are also in G:

∀u, v ∈ V ′ : (u, v) ∈ E =⇒ (u, v) ∈ E′

Definition 49 (Connected Components). Let (Vi)i∈I be a partition of the vertex set
of a graph G such that all elements within each partition (Vi) are connected by a path
(Def 45). That is

∃(u, v)-path ⇐⇒ ∃i ∈ I : u, v ∈ Vi

Then the induced subgraphs G[Vi] are called the connected components of G. ✍

Note that the existence of a path between vertices leads to an equivalence relation
(Def 31) on the vertex set V . Correspondingly, it can also be seen as a partition of the
vertex set V into equivalence classes.

Definition 50 (Bridge). An edge e ∈ E is called a bridge if the graph G′ := (V,E\{e})
has one more connected component than G. ✍

Theorem 13. A graph G = (V,E) has at least |V | − |E| connected components, i.e.

|V | − |E| ≤ c

where c is the number of connected components. ◁

Proof. The graph G = (V, ∅) has |V | connected components, each containing one
vertex. Any edge inserted into the graph reduced the number of connected components
by at most one:

• If it connects two previously separate connected components, it reduces the number
of connected components by one.

• If it connects two vertices within a connected component, it does not change the
number of connected components. □

Corollary 14. If a graph G = (V,E) is connected, i.e. c = 1, then

|V | − |E| ≤ 1 ◁

In a minimally connected graph, the difference of the number of edges and the number
of vertices reaches the bound from Corollary 14. All edges are bridges (Def 50). These
minimally connected graphs are called trees (see Section 5.3).

25

5.3 Trees

A tree is a minimally connected graph. A graph containing trees as its connected
components is called a forest.

Definition 51 (Forest). An undirected (Def. 39), simple (Def. 40) graph without cycles
(Def. 47) is a forest. ✍

Definition 52 (Tree). A connected (Def. 49) forest is a tree. ✍

Definition 53 (Leaf). A node v ∈ V with deg(v) = 1 is called a leaf. ✍

Theorem 15. A tree with at least two vertices has at least two leaves. ◁

Theorem 16 (Characterization of Trees). Given an undirected graph G = (V,E), the
following statements are equivalent:

(1) G is a tree, i.e., a connected graph without cycles.

(2) G is connected and |V | = |E|+ 1.

(3) G has no cycles and |V | = |E|+ 1.

(4) G is connected and every edge is a bridge.

(5) G has no cycles and if an additional edge is added, it creates a cycle.

(6) For all vertices u, v ∈ V there is a unique u-v-path. ◁

Proof. In total, 2 ·
(
6
2

)
= 30 implications are claimed in Theorem 16. By transitivity

of implication, it is sufficient to show a loop of implications. Any statement then follows
from any other by following the implications in the loop. We can show the implications
in the following cycle:

(6) (1)

(4) (5)

(2) (3)

(1) ⇒ (6):

Let u, v ∈ V . Because G is connected (Definition 49), there is at least one u-v-path. It
remains to show that this path is unique. Assume, for a contradiction, that there are
two distinct u-v-paths. Starting at their first branching vertex, follow one path until
they meet again, then return along the other path; this produces a cycle, contradicting
(1). Hence the u-v-path is unique, establishing (6).

(6) ⇒ (4):

As there exists a path for any pair u, v ∈ V , we obtain immediately that G is connected.
It remains to show that every edge is a bridge. Assume, for a contradiction, that there is
an edge e ∈ E that is not a bridge. Then, we can remove e and G is still connected, i.e.,
there is a path connecting the vertices adjacent to e. In other words, with e there are
two paths connecting these two vertices: the original edge e and the detour through the
remaining graph. This contradicts the uniqueness in (6). Hence every edge is a bridge,
proving (4).

(4) ⇒ (2):

As connectedness is already given, it remains to show that |V | = |E|+ 1. We show this
by induction over the number of edges |E|.

(i) Base case. If |E| = 1, the edge joins two vertices, so |V | = 2. ✔

(ii) Induction hypothesis. Assume that every connected graph in which every edge
is a bridge satisfies |V | = |E|+ 1.

26

(iii) Induction step. As all edges are bridges, we can simply split the graph into
two connected components by removing any of the edges: Then, we are left with
two connected graphs. By (ii) and considering that all remaining edges are still
bridges, we have

|E1|+ 1 = |V1| |E2|+ 1 = |V2|

By adding these two equations, we obtain

|E1|+ |E2|︸ ︷︷ ︸
=|E|−1

+2 = |V1|+ |V2| = |V |

and therefore |V | = |E|+ 1. ✔

Thus (2) holds.

(2) ⇒ (3):

Let G be a connected graph with |V | = |E| + 1. Assume, for a contradiction, that G
contains a cycle and let e be an edge of one such cycle. Since e connects two vertices
u, v in the cycle, there is a path from u to v that does not use e. In other words, e is
not a bridge (Def 50). Removing e therefore leaves the graph connected (since the rest
of the cycle still links its endpoints), so G′ = (V ′, E′) = (V,E \ {e}) is connected with
the same number of vertices but one edge less, i.e. |V ′| = |V | and |E′| = |E| − 1. For
this new graph G′ we have

|V ′| − |E′| E
= 2

which is impossible for a connected graph by Corollary 14. Hence no cycles exist and
(3) follows.

(3) ⇒ (5):

We have to show that adding an edge e′ to the graph G creates a cycle. First, we show
by induction on |V | that whenever |E| ≥ |V |, there must be a cycle.

(i) Base case. The first interesting case is (|V | = 3). Three edges on three vertices
force the triangle K3, which has a cycle. ✔

(ii) Induction hypothesis. Assume a graph G with |E| ≥ |V | contains a cycle.

(iii) Induction step. We distinguish two cases:

If there exists a leaf in the graph, we merely remove that vertex and the corre-
sponding edge. This reduces the number of vertices and the number of edges by
one. If |V | ≤ |E| then also |V | − 1 ≤ |E| − 1 and the graph contains a cycle by
(ii). So, also the graph containing the leaf has a cycle. ✔

If there is no leaf, then all vertices have deg(v) ≥ 2. Then we can simply construct
a cycle by going from one vertex to the next. As there is no leaf, there is no dead-
end. As the number of vertices is finite, we have to end up at the initial vertex
sooner or later and thereby closing a cycle. ✔

From (3) we have |V | = |E| + 1 = |E′| for E′ := E ∪ {e′}. Thus G′ = (V,E′) contains
a cycle, as desired.

(5) ⇒ (1):

We already have that G is acyclic. So it remains to show that G is connected. Assume,
for a contradiction, it were not connected, with two components G1, G2. Then, we
could add a vertex e′ to G by linking the two connected components. This yields a
contradiction with (5), as this insertion of an edge did not create a cycle. Hence G must
be connected.

This closes the circle of implications, proving Theorem 16. □

27

5.3.1 Counting trees: Cayley’s theorem

How many labeled trees exist with n vertices? The question can be rephrased, asking
for the number of different spanning trees of the complete graph (clique) with n vertices,
Kn.

Definition 54 (Spanning tree). Given a connected graph G = (V,E), a graph H =
(V,E′) with the same vertex set is called a spanning tree of G if H is a tree (Def 52)
and E′ ⊆ E. ✍

Generally, there exist many different spanning trees for a given graph. An interesting
algorithmic problem is to find the one that optimizes, for examle, the total weight, given
that each edge has a weight. The most famous algorithms are greedy and due to Kruskal
(1956) and Prim (1957).

Example 13. Let us first consider some cases for small n:

• n = 1: There is only one vertex and no edges and thus only one spanning tree.

• n = 2: There is merely one connected graph with two nodes. The single spanning
tree is just the graph itself.

• n = 3: The completely connected graph K3

v0

v1 v2

has 3 spanning trees:

• n = 4: The completely connected graph K4

v1 v0

v2 v3

has 12 + 4 = 16 = 42 spanning trees:

We can group them into 2 sets: The “snake” type and the “star” type. The first
12, the “snakes”, are the same if we consider them unlabeled: They are isomorphic
(Def. 55).

• n = 5: There are 3 different shapes of trees with 5 vertices:

• “snake”: For any permutation of the 5 vertices, we obtain another isomorphic
graph - except when we simply reverse the order. Therefore, there are 5!/2 =
60 different labeled trees of this type.

• “star”: For each of the 5 vertices being in the center, we obtain a different
graph. Swapping the leaves does not change the graph. So we have 5 different
labeled trees of this type.

28

• “Y”: This type has one vertex in the center, two short ends with 1 edge each
(the upper part of the Y) and one long end with 2 edges (the lower part of
the Y). The permutations of the vertices give the isometries. But swapping
the two leaves at the short ends does not change the graph so we have again
5!/2 = 60 different labeled trees of this type.

Thus, in total we have 60 + 5 + 60 = 125 = 53 different labeled trees with 5
vertices. ◀

Definition 55 (Isomorphism). Two graphs G = (V,E) and G′ = (V ′, E′) are called
isomorphic, written G ∼= G′, if there exists a bijection

φ : V −→ V ′ satisfying ∀u, v ∈ V : (u, v) ∈ E ⇐⇒
(
φ(u), φ(v)

)
∈ E′

Such a function φ that preserves the edge relations is called an isomorphism. ✍

In particular, to count all labelled trees on n vertices one may first classify all unlabelled
tree-shapes (up to isomorphism), and then multiply by the number of ways to assign
labels to each shape (dividing out automorphisms of the shape). A more direct approach
uses Cayley’s theorem:

Theorem 17 (Cayley). The number of different labelled trees on n vertices (equiva-
lently, the number of spanning trees of the completely connected graph Kn) is

nn−2 ◁

Proof. We construct a bijection{
trees on [n] with two distinguished marks (head, tail)

}
←→

{
f : [n]→ [n]

}
Since there are n2 ways to choose the head and the tail in a tree on n vertices, this
implies that there are

nn

n2
= nn−2

different labelled trees on n vertices.

• function → tree

(a) Start with any f : [n] → [n]. Draw its functional digraph: each i points to
f(i). Every component has exactly one directed cycle.

(b) Let M ⊆ [n] be the set of all vertices on these cycles. On M , f restricts to a
permutation.

(c) Starting from the head, the ith vertex on the spine is chosen as f(M [i])
where M [i] is the ith smallest element of M . So in particular the head is
f(M [1]) = f(minM) and the tail is f(M [|M |]) = f(maxM).

(d) For every v /∈M join v to f(v). This yields an undirected, labeled tree with
two additional marks: the head and the tail.

• tree → function

(a) Given a tree on [n] with a marked head and a marked tail, read off the unique
simple path from head to tail; its vertices are exactly the set M .

(b) Declare f to send M [i] to the ith vertex on the path from head to tail.

(c) For any other vertex v, send f(v) to the unique neighbor of v on the path
toward the spine.

These two constructions are clear inverses of one another. Therefore the number of
labeled trees with two marks is exactly the number of functions nn, and dividing by the
n2 choices of the marks (head, tail) gives the claimed result. □

29

5.4 Some special graphs

Complete Graphs Kn (also called cliques) are graphs with n vertices an edge between
every pair of vertices. For a complete graph Kn with n vertices, Kn, there are

|E| =

(
n

2

)
=

n(n− 1)

2

edges.

Cycles Cn are graphs with all vertices connected in a single cycle without additional
edges. The smallest cycle is C3 (triangle). The cycle Cn with n vertices has n edges.

Mesh Graphs Mm,n are graphs with a vertex set

V = {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

and an edge set containing merely the closest neighbors of each vertex

E = {((i1, j1), (i2, j2)) | |i1 − i2|+ |j1 − j2| = 1}

and no diagonals:
n

m

If we interpret the mesh in a cyclic way, we obtain different topological shapes, depending
on how we connect the boundaries:

• Disk: If we do not connect any boundaries, we obtain a 2-dimensional orientable
manifold with a single boundary component homeomorphic to a circle, and it embeds
in R2 without self-intersection.

• Cylinder: The nodes are connected horizontally, i.e. left and right boundaries are
connected, but the top and bottom are not:

ECylinder = E ∪ {((i, 1), (i, n)) | 1 ≤ i ≤ m}

It is a 2-dimensional orientable manifold with two boundary circles; although intrin-
sically flat, it requires embedding in R3 as a tube to avoid self-intersection.

• Möbius strip: The left and right boundaries are connected, but in reverse order:

EMöbius = E ∪ {((i, 1), (m− i+ 1, n)) | 1 ≤ i ≤ m}

The Möbius strip is a 2-dimensional non-orientable surface with one boundary circle.
Three spatial dimensions (R3) are needed to embed it without tearing or intersecting
itself.

• Torus (‘Donut’): The nodes are connected horizontally as well as vertically:

ETorus = E ∪ {((i, 1), (i, n)) | 1 ≤ i ≤ m}︸ ︷︷ ︸
ECylinder

∪{((1, j), (m, j)) | 1 ≤ j ≤ n}

It is a closed (no boundary), 2-dimensional orientable manifold of genus 1, and it
embeds smoothly in R3 as the familiar donut shape.

• Klein bottle: The left and right boundaries are connected in reverse order (as in the
Möbius strip), while the top and bottom boundaries are connected without reversal:

EKlein = E ∪ {((i, 1), (m− i+ 1, n)) | 1 ≤ i ≤ m}︸ ︷︷ ︸
EMöbius

∪{((1, j), (m, j)) | 1 ≤ j ≤ n}

It is a closed (no boundary), 2-dimensional non-orientable manifold. Unlike a sphere
or a torus, the Klein bottle does not have an inside or outside. Any realization in R3

self-intersects, so a true embedding requires R4.

• Projective plane: Both pairs of opposite boundaries are connected in reverse order:

ERP2 = E ∪ {((i, 1), (m− i+1, n)) | 1 ≤ i ≤ m} ∪ {((1, j), (m,n− j +1)) | 1 ≤ j ≤ n}

30

Complete bipartite graph Km,n is a graph with two sets of vertices V1 and V2 with
|V1| = m and |V2| = n, and an edge between every pair of vertices vi ∈ V1 and vj ∈ V2.
It has |V | = m+ n vertices and |E| = mn edges:

m n

Hypercube Qd is the d-dimensional hypercube with vertices that are d-bit strings,
i.e.

V = {0, 1}d = {(b1, . . . , bd) | bi ∈ {0, 1}}

It has |V | = 2d vertices. The edges are given by pairs with Hamming distance (Def 56)
1, i.e. the two strings differ in exactly one bit:

(u, v) ∈ E :⇔ dH(u, v) = 1

Every vertex has d neighbors, i.e., ∀v ∈ V : deg(v) = d. The total number of edges is

|E| = d · 2d

2
= d · 2d−1

as each of the 2d degrees is d. We draw the graph as follows: For obtaining the graph
Qd+1 we draw twice the graph Qd. To one of the two we add a 0 after all bit strings
labelling the vertices, to the second respectively a 1. Finally, we add edges to connect
the corresponding vertices of the two copies of Qd. We start from Q0, containing merely
the empty word ϵ. Then the hypercube Q1 is constructed following the procedure above.
Repeating the same process yields Qd for larger d.

Definition 56 (Hamming distance). The Hamming distance between two bit strings
of same length, dH(x, y), with x, y ∈ {0, 1}d is the number of bits in which x and y
differ. ✍

5.5 Euler Tours and Hamilton Cycles

In this section we will see two extrema of computational hardness (linear time vs. NP-
complete) in two very similar-sounding problems.

Example 14 (Bridges of Königsberg).

→

In 1736, Leonhard Euler considered the question of whether there is a tour crossing every
of the seven bridges in the Prussian city of Königsberg exactly once. This question is
often said to mark the beginning of graph theory. The situation is reflected in the above
(multi-)graph. We are looking for a closed way that passes each edge exactly once - a
so-called Euler tour (Def. 57). ◀

Definition 57 (Euler Tour). An Euler tour is a closed sequence of edges of a graph
G = (V,E) that contains each edge of the graph exactly once. ✍

31

Theorem 18 (Euler). A connected graph has an Euler tour if and only if all degrees
are even. That is

G has an Euler tour ⇔ ∀v ∈ V : deg(v) is even ◁

Proof. We first show that the condition ‘deg(v) is even for all v ∈ V ’ is necessary for
the existence of an Euler tour.

‘=⇒’:

This follows from the observation that any vertex is reached and left the same number
of times. Whenever we reach or leave the edge, we have to use an other edge to form
an Euler tour. Thus, the number of available edges has to be even if we finally have to
have passed all edges. Note that the same holds for the starting vertex.

It remains to show that the condition is sufficient.

‘⇐=’:

We construct an Euler tour for a graph satisfying the condition above. First, we choose
an initial vertex v1 ∈ V . Following any yet unused edge one now proceeds to other
vertices. As there is an even number of edges ending at each of the vertices, and as
edges are always used (i.e., removed) in pairs (arrive + leave), we always finds such an
unused edge for continuing, except at v1. As the number of edges and the number of
vertices are finite, we must eventually end up in v1, and thus obtain a first closed way.

This way may not contain all edges. Then, as the graph is connected, there must be
a vertex v2 in the already-found way with still (at least two) unused edges. We use
this vertex v2 as the starting point of an additional way, using the same procedure of
following the unused edges. Note that it is still true that all degrees in the graph are
even since, again, we removed edges always in pairs with respect to any vertex: arrive
and leave.

Repeatig this iteratively until we used all edges yields the desired Euler tour. □

As the degree of any of the vertices of the multigraph in Example 14 is 3 or 5, thus odd,
there does not exist an Euler tour.

The complete graph Kn has an Euler tour if and only if n is odd:

deg(v) = n− 1 ∀v ∈ V

The hypercube Qd has an Euler tour if and only if d is even:

deg(v) = d ∀v ∈ V

The proof of Theorem 18 uses a simple greedy4 algorithm, that finds an Euler tour in
O(|E|) time. The given proof above uses a simple greedy algorithm, that finds an Euler
tour in linear time in the number of edges |E|. Finding on Euler tour is, hence, among
the computationally easiest problems (you simply have to go through the entire graph,
and you have it). If we modify the problem a little replacing “edge” by “vertex”, we
end up with a hard problem, the Hamilton cycles.

Definition 58 (Hamilton Cycles). A cycle that visits every vertex exactly once is
called a Hamilton cycle. A graph containing such a cycle is called Hamiltonian. ✍

The cycles Ck are Hamiltonian for all k ≥ 3.

The complete graphs Kn contain the cycles Cn for all n ≥ 3, and therefore a Hamilton
cycle. Thus they are Hamiltonian.

Wheel graphs Wn are Hamiltonian.

Trees are not Hamiltonian, as they contain no cycles at all.

Mesh graphs Mm,n are Hamiltonian if and only if m · n is even. To see this, note that
Mm,n is bipartite. A bipartite graph can be Hamiltonian only if it contains the same
number of nodes of each of the two colors, because in the (closed) Hamiltonian cycle, the

4At each vertex we choose any unused edge, independent of any previous choice. The choice does
not depend on any global properties.

32

colors must switch in every step. Therefore the number of nodes (m · n) must be even,
showing that the latter is a necessary condition. If m · n is even, either m or n must
be even. Without loss of generality, assume m is even (otherwise we can just rotate by
90◦). Then we can construct a Hamiltonian cycle by starting at the top left corner and
going down the first column, then going up in a zig-zag pattern through the remaining
columns.

Complete bipartite graphs Km,n are are Hamiltonian if and only if m = n:

Hypercubes Qd are Hamiltonian for d ≥ 2. Q0 and Q1 are trees and thus cycleless. The
square Q2 is Hamiltonian (base case). Assume Qd is Hamiltonian (induction hypothesis).
To construct a Hamilton cycle in Qd+1 we remove two corresponding edges (a10, a20)
and (a11, a21), and then add (a10, a21) and (a10, a21) (induction step).

The problem wether a general graph is Hamiltonian is believed to be hard: It is NP-
complete.

5.6 Planar Graphs

Definition 59 (Planar graph). A graph G = (V,E) is planar if it can be drawn in
the plane such that no edges cross. Such a drawing is called a planar embedding of G.
Sometimes when we say planar graph, we refer to a planar embedding. ✍

Example 15. The complete graph K5 and the complete bipartite graph K3,3 are not
planar:

◀

To actually see that the latter two graphs are not planar, we derive necessary properties
all planar graphs share.

Definition 60 (Face). A face or region f of a planar graph G = (V,E) is a connected
region of the plane. The set of regions is denoted by F . ✍

The boundary of a face is the subgraph formed from all vertices and edges that touch
the face. Two faces are adjacent if their boundaries have at least one edge in common. A
boundary walk of a face is a closed walk once around the perimeter of the face boundary.
The degree of a face f is the length of the boundary walk of the face, denoted deg(f).

Lemma 19 (Faceshaking). Let G = (V,E) be a graph with a planar embedding, where
F is the set of all faces. Then ∑

f∈F

deg(f) = 2|E| ◁

Proof. Each edge has 2 sides, and each side contributes 1 to a boundary walk, so the
edge contributes 2 to the sum of degrees. □

Theorem 20 (Euler’s polyhedron formula). Let G = (V,E) be a connected planar
graph that divides the plane into |F | regions (including the region outside the graph).
Then

|V |+ |F | − |E| = 2

But not the other way round! ◁

33

Proof. Theorem 20 is true for trees, as they have |F | = 1 and |E| = |V | − 1. We
can now reduce any connected planar graph to a tree by removing edges from cycles.
Removing an edge from a cycle reduces the number of regions and the number of edges
by one, while the number of vertices remains the same. Repeating this process until
there are no cycles left, we obtain a tree that satisfies Theorem 20 as seen above. Thus,
Theorem 20 also holds for the initial planar graph. □

But if there are crossings, the notion of a region and thus also the number of regions |F |
is not defined. We find bounds on the number of regions |F | in terms of the number of
edges |E|.

Since a simple graph (Definition 40) does not contain loops or multiple edges between
two vertices, every region must be surrounded by at least three edge-sides. The number
of edge-sides is twice the number of edges, and thus

3|F | ≤ 2|E| =⇒ |F | ≤ 2

3
|E|

If the graph is bipartite, every region is bounded by at least four edge-sides, and thus

4|F | ≤ 2|E| =⇒ |F | ≤ 1

2
|E|

Inserting those formulae into Theorem 20 yields

Corollary 21. In a finite, connected, simple, planar graph G = (V,E)

|E| ≤ 3|V | − 6 (24)

if |V | ≥ 3. If the graph is also bipartite, then

|E| ≤ 2|V | − 4 (25)

◁

Proof. If the graph is simple, then every face has at least 3 edges. Now 3|F | would
count every edge 2 times, so we have 3|F | ≤ 2|E|. But |E|+2 = |V |+ |F | ≤ |V |+2|E|/3.
So 3|E|+ 6 ≤ 3|V |+ 2|E|. So |E| ≤ 3|V | − 6. In a bipartite graph every face must have
at least 4 sides. Thus 4|F | ≤ 2|E|, and the result follows similarly. □

Average degree The inequalities (24) and (25) imply for the average degree

deg(G) :=
1

|V |
∑
v∈V

deg(v) =
2|E|
|V |

For a planar graph,
|E| ≤ 3|V | − 6 < 3|V | =⇒ deg(G) < 6

For a bipartite planar graph,

|E| ≤ 2|V | − 4 < 2|V | =⇒ deg(G) < 4

Characterizing planarity In Example 15, K5 violates (24) and K3,3 violates (25).
In fact, it turns out that K5 and K3,3 are fundamental obstacles to planarity (Theo-
rem 22).

A subdivision of a graph G is a graph G′ obtained by inserting vertices into edges of G
zero or more times.

Theorem 22 (Kuratowski). A graph is planar if and only if it does not contain a
subgraph that is a subdivision of K5 or K3,3 (Example 15). ◁

So every non-planar graph “contains” K5 or K3,3 in some sense.

34

5.7 Graph Colorings

Definition 61 (Coloring). A k-coloring of a graph G = (V,E) is a function

c : V → {c1, . . . , ck}

such that c(v1) ̸= c(v2) for all edges (v1, v2) ∈ E. ✍

Definition 62 (Chromatic number). The chromatic number χ(G) of a graph G =
(V,E) is the minimal k such that a k-coloring of G exists. ✍

Example 16 (Chromatic numbers of special graphs).

• Planar graphs Gp have χ(Gp) ≤ 4.

• Complete graphs Kn have χ(Kn) = n as every vertex needs its own color.

• The complete bipartite graphs have a chromatic number χ(Km,n) = 2 by definition.

• Mesh graphs are bipartite: χ(Mm,n) = 2 (except for m = n = 1).

• Hypercubes are bipartite: χ(Qd) = 2 for d ≥ q. This follows from an inductive
argument: Obviously, Q1 is two-colorable. If Qd is twocolorable, then we can color
the second Qd with flipped colors before connecting the two to construct Qd+1.

• For cycles, it depends on the parity of their length: χ(Cn) =

{
2 n even

3 n odd

• Trees are two-colorable, χ(T) = 2 (for any tree with at least an edge), as we can
arrange the nodes in “levels”. Then all levels with odd parity (depth) are colored
in one color and those with even parity in another. ◀

Theorem 23. A graph G = (V,E) is bipartite if and only if it does not contain an
odd-length cycle. ◁

Proof. If G is bipartite, it cannot contain an odd cycle, since then χ(G) ≥ 3. It
remains to show that, if G contains no odd cycle, then it is also bipartite. Let’s consider
a spanning tree of G. We can then color the levels with two colors. We now need to
show that there are no edges in G that connect two levels of the same color. This follows
from the observation that adding an edge connecting two vertices of levels with same
parity always introduces an odd cycle, and thus a contradiction. □

Theorem 23 yields a linear-time algorithm to decide whether a graph is two-colorable.
To decide whether a graph is 3-colorable is an NP-complete problem. Again, we see the
two extremes of computational hardness in two very similar-sounding problems.

35

	Preface
	References
	Introduction
	Propositional Logic
	Syntax of propositional logic
	Semantics of propositional logic
	Logical Laws
	Normal forms
	Models and semantic conclusion
	Proof theory of propositional logic
	Short excursion into complexity theory

	The resolution calculus

	Set Theory
	Basic notions
	Cantor's Paradise
	Zermelo/Fraenkel/Choice (ZFC) set theory
	Laws derived from logic
	The Cartesian product

	Relations
	Representation of relations
	Properties of relations
	Equivalence relations
	Order relations

	Functions

	Combinatorics
	Binomial Coefficient and Pascal's Triangle
	Urn Model
	Permutations (arrange)
	Variations (choose and arrange)
	Combinations (choose)

	Rules and strategies
	Inclusion-Exclusion Principle.
	The Pigeonhole Principle
	Double counting

	Binomial Coefficients: Properties and Approximations
	Symmetry
	Vandermonde Identity
	Binomial Theorem
	Approximations

	Special Counting Problems
	Relations
	Equivalence Relations
	Permutations with Cycles

	Graph Theory
	Motivation
	Basic notions
	Basic notions for simple undirected graphs

	Trees
	Counting trees: Cayley's theorem

	Some special graphs
	Euler Tours and Hamilton Cycles
	Planar Graphs
	Graph Colorings

