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1 Spectral theorem

Theorem 1.1. Let A € R™*" be symmetric, i.e. A" = A. Then,
A:Z)\Z uiu;r (1.1)
i=1

with orthonormal eigenvectors ui,...,u, € R™ and real eigenvalues A\1,..., A, € R. Equiva-
lently,
A=UAU" (1.2)

with U := [u1 -+ un], U'U = I, and A = diag(\1, ..., An). <

Theorem 1.1 is extensively used in Principal Component Analysis (PCA) to reduce the com-
plexity of the input space (it is applied to the covariance matrix of the inputs).
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Let G = (V, E) be an undirected graph with the adjacency matrix A € R™*"

)1 (wv) e E
[Aluw = {0 () ¢ E (2.1)

where [-]4o denotes the entry in row u and column v.

The diagonal degree matrix D € R™*™ is defined by

where d,, is the degree of node u, i.e. D simply places all node degrees on the diagonal.

2.1 normalized adjacency and multi-hop propagation

Definition 2.1. The symmetrically normalized adjacency matrix is

A=D'?AD™'? (2.3)
or, entrywise,
1 (u,v)
[A]uv = dudv ’
0 (u,v)

|

Fact 2.1 (multi-hop propagation). The entry (A*),. can be computed explicitly as follows:

T (z,y)EER 4
the sum is over all walks m = (v,...,u) of length k from v to v and the product is over the
edges Er = {(v,u1),..., (ur—1,u)} on the walk. <

Corollary 2.2. Let v,u € V with r = dg(v,u), where dg(,-) denotes the shortest-path
distance. Assume there is exactly one path

(v, U1y .oy Ur—1,u)
of length r between v and wu:
0O )
Oo—oO O—oO
v Ul Uy —1 u
% %

dg(v,u) =71

Then . )
o 1 1 1 1 1
(A7) = Nz 1:[1 Vilurss Ay adu  dode 1:[1 du; (2:5)
<
2.2 graph Laplacian
Definition 2.2. The combinatorial graph Laplacian is
L-D 4 (2.6)
and the normalized graph Laplacian is
L=D"'’LD""?=D"’(D-A)D "2 1,- 4 (2.7)

Both are symmetric and positive semidefinite, and their eigenvalues satisfy
0=X <A << A

A1 is called the spectral gap. The number of zero eigenvalues (itel; the multiplicity of the 0
eigenvalue) equals the number of connected components of the graph. <
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To understand Definition 2.2, consider a function f: V' — R. Denote by f € R™ the vector
whose v-th entry is f(v). Then

(Lf)o = f(v) \ﬁ uz Jw (2.8)

e., (L f)o is the value at v minus a degree-normalized average of the neighbors. This is why
the Laplacian is often viewed as a discrete second derivative on the graph: it measures how
much f at v deviates from its neighborhood.

If we plot the eigenvectors of the Laplacian, it resembles that of a signal.
Another important identity is the quadratic form
1 2
FILf=5 3 (f(w)—f() (2.9)
(u,v)EE

which shows that L (and hence also L) is positive semidefinite, since the right-hand side is
always nonnegative. Moreover, (2.9) is small exactly when f varies slowly across edges, so the
Laplacian encodes the smoothness of functions on the graph.

2.3 Cheeger inequality

The Cheeger inequality relates the spectral gap A1 to the Cheeger constant h(G), which mea-
sures how difficult it is to separate the graph into two large pieces. It states, in particular,
that

3h(G)? < M < 20(G),

so a larger spectral gap implies that the graph is more “well-connected”.

2.4 effective resistance
Definition 2.3 (effective resistance). View each edge (u,v) € E as an electrical resistor of
resistance 1€2. The resulting network has a well-defined resistance between any two nodes.

For two nodes s,t € V, the effective resistance R(s,t) is defined as the voltage difference needed
to send one unit of electrical current from s to ¢t. It can be computed as

R(s,t) = (es —e:) L (es — er) (2.10)

where L' is the Moore—Penrose pseudoinverse of the graph Laplacian (2.6) and e, is the stan-
dard basis vector of vertex v. <

2.4.1 Interpretation

If the graph offers many short, parallel paths between s and t, then current can flow easily,
so R(s,t) is small. If there are few or long paths, the current is “bottlenecked” and R(s,t) is
large. Thus, effective resistance measures how “well-connected” two nodes are inside the global
geometry of the graph.

2.4.2 Connection to random walks

A random walk on G is the Markov chain that, from a node v, moves to a uniformly random
neighbor of v. Its transition matrix is

P=D'A (2.11)

$0 Py =1/dy if (v,u) € E. The matrix (2.11) is often called random-walk matrix.

For two nodes u, v, the commute time CT(u,v) is the expected number of steps for the random
walk to start at u, reach v, and return to u again. It can be related to the effective resistance
via

CT(u,v) = 2|E|R(u,v) (2.12)
giving a geometric interpretation of how “far apart” two nodes are in terms of random-walk
behavior, i.e. two nodes have small commute time exactly when they have small effective
resistance.
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3.1 Graph shift operators

Definition 3.1. A matrix A € R"*" is called a graph shift operator (GSO) if it satisfies

ai; =0 whenever (¢,j) ¢ E and i # j

where a;; = [A]” This means that applying A to node attributes only mixes information
from direct neighbors. Typical choices include the Laplacian (2.6) and the random-walk matrix
(2.11). |

Applying A to node attributes X € R™*% is local in the sense that the i-th row of AX depends
only the neighbors N (i) together with possibly 4 itself:

’
xT; = E QijT; = QiiT; + E Qi T;
JEN(3)

Xdp,

Using a parameter matrix @ € R% , we can apply the filter on a different space:

h; = [AX®©]; Zawmj = @@+ Y @yw;©
JEN(I)

3.2 Graph convolutions

Let X € R™% be node features, let A € R**™ be a GSO and let ® € R%*% be trainable
weights. A linear graph convolution is

H=A4X6© (3.1)
where H € R"*% are the transformed node features.
Adding a nonlinearity o yields a graph convolutional layer
H=0(AX0) (3.2)
so the parameters can be learned by gradient-based optimization.

Remark 3.1 (multi-hop aggregation). Stacking K layers increases the receptive field. Ignor-
ing nonlinearities for intuition, applying two layers gives A(AX ) A?X which aggregates
information from 2-hop neighborhoods. <

Two common ways to aggregate up to K hops are polynomial filters

H" =%"A*xe® (3.3)

0

\E M=

or a sequence of first-order steps HO = X, *) = AH*-D@® where nonlinearities can be

inserted between layers.

3.3 Examples of choices for A

Several popular layers differ essentially by the choice of A. A standard example is the GCN
normalization

A=D"*(I,+A)D? (34)

which includes self-loops through I,, + A. Another example is the random-walk normalization
(2.11) which corresponds to averaging over neighbors with probabilities. A third example is
the GIN choice

A=A+ (149, (35)

which strengthens the contribution of the root node via €.
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3.4 Message passing

Definition 3.2. Let x; € R% be the feature of node i and let eji € R% be the feature of
edge (j,7). A message-passing (MP) layer has the form

h; = ’Y(ﬂ% aggjeN(i){¢(mi7mf’eji)}) (3.6)

where
e ¢ is a message function, depending on x;, x; and possibly edge features e;;
e agg is a permutation-invariant aggregation function (e.g. sum, mean, max)

e ~ is an update function to obtain new features from aggregated messages and previous
features

Note that ¢ and v are often parametric (e.g. MLPs). <

Remark 3.2. Definition 3.2 is the most general (and expressive) form of GNN, encompassing
also graph convolutions (3.2) as a special case. (3.2) can be rewritten as

h; = ( ij '@)
7 Z]’GN(i) @i %=
with a;; = AU So it fits into Definition 3.2 with ¢ (i, x;, e;:) = a;jx;© (independent of x;

and ej;), agg = sum, and y(x;, ) = o(-) (independent of x;). <

Message passing operations whose message function ¢ depends only on the sender node’s fea-
tures are called isotropic. They are called anisotropic when also edge’s or receiver node’s
features are exploited, i.e. ¢ also depends on ej; or ;.

3.4.1 Graph attention networks

are a typical example of anisotropic message passing.

1. Transform node features:

with ©; € R%*%n,
2. Compute attention scores between neighbors:
2.1. Score (02 € R?):
aij = o ([} || }]62) (3.8)

2.2. Normalize with softmax over N (4):

exp(ay)

g = )
’ 2 ken(i) exXP(air)

(3.9)

3. Aggregate (weighted sum) using attention coefficients as weights:

JEN (i)

3.4.2 Edge-conditioned convolution

To incorporate edge attributes into the messages, one may use an MLP p: R — Rd=Xdr to
generate edge-dependent weights. For each edge (j,7) we compute

©;i = plej;) € R%=> (3.11)
and update nodes by
hi=x;0; + Z ;0 (3.12)
JEN (D)

so edges directly control how neighbor information is transformed.
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3.5 A good recipe

is to pre- and post-process node features with a 2-layer MLP and to use 4 to 6 message-passing
steps in between:

{ 2-layer MLP }

{ 2-layer MLP }

Message passing at the ¢-th layer:

1. Message:
mj; = PReLU (BatchNorm (@' + b') ) (3.13)

2. Aggregate by summation:

mi = Z mﬁi (3.14)

JEN(i)

3. Update by concatenation:
h{tt = hi || m{ (3.15)

Remark 3.3. This message-passing instance is isotropic, since the message (3.13) depends
only on the sender embedding hf and not on edge attributes or the receiver features. <

3.6 Over-smoothing

Repeated graph convolutions tend to reduce feature differences across neighbors, behaving like
low-pass filtering on the graph. After many layers, node representations can become almost
indistinguishable within connected components, which can harm node-level prediction tasks.
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4 Pooling on graphs

Pooling builds coarser graphs to reduce size or to obtain hierarchical representations.

4.1 SRC decomposition

1. Selection: A selection operator computes K supernodes
SEL: GO—)S:{S1,...7SK}

where each S is a set of nodes equipped with nonnegative scores. Equivalently, selection
can be encoded by a matrix § € RE*",

2. Reduction: Given a selection matrix 8 € R¥*"™ and node features X € R"*%  a typical
reduction is the weighted aggregation

X' =8X
which produces pooled features X’ € R¥* %=

3. Connection: A common connection rule builds the pooled adjacency by aggregating
edges between supernodes. Using the same S, a standard choice is

A'=SAS’
which yields A’ € RE*K,

Remark 4.1 (spectral intuition). Low-frequency eigenvectors of the Laplacian reveal coarse
clusters. A classical pipeline performs clustering (e.g. k-means) in the space spanned by the
first few Laplacian eigenvectors, but this can be expensive and ignores attributes. <

4.2 Global pooling

For graph-level tasks, one often needs a graph-to-vector map. A global pooling (or readout)
aggregates node embeddings {h;}icv into a single vector and must be permutation-invariant.
Typical choices include sum, mean or max pooling, as well as attention-weighted sums.
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