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Preface

This document contains unofficial student-made notes for the course Scattered Data Approxi-
mation taught by Michael Multerer with the assistance of Jacopo Quizi in Winter 2025/2026
at the Università della Svizzera italiana. It is mainly based on [1]. Section 4 is summarized
from [2]. The textbooks used in the course were [3, 4]. If you spot an error, please report
it to fabianlucasbosshard@gmail.com. The LATEX source is available at https://github.com/
fabianbosshard/usi-informatics-course-summaries.

This work is licensed under a Creative Commons “Attribution 4.0
International” license.
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1 Matrix Basics

1 Matrix Basics

1.1 Derivatives

For a scalar-valued function f : Rn → R we use the Jacobian (numerator-layout) convention

∂f

∂x
∈ R1×n

i.e. a row vector. The column-gradient is obtained by transposition: ∇xf =
(
∂f
∂x

)⊤
Linear form. For f(x) = b⊤x with b ∈ Rn,

∂

∂x

(
b⊤x

)
= b⊤

Quadratic form. Let A ∈ Rn×n and define f(x) = x⊤Ax. Writing

f(x) =

n∑
i=1

n∑
j=1

xiAij xj ,

we differentiate componentwise. For k ∈ {1, . . . , n},

∂f

∂xk
=

∂

∂xk

(
n∑

i=1

n∑
j=1

xiAij xj

)

=

n∑
i=1

n∑
j=1

Aij
∂

∂xk
(xixj)

=

n∑
i=1

n∑
j=1

Aij

(
∂xi
∂xk

xj + xi
∂xj
∂xk

)

=

n∑
i=1

n∑
j=1

Aij (δik xj + xi δjk)

=

n∑
i=1

n∑
j=1

Aij δik xj +

n∑
i=1

n∑
j=1

Aij xi δjk

=

n∑
j=1

(
n∑

i=1

Aij δik

)
xj +

n∑
i=1

xi

(
n∑

j=1

Aij δjk

)

=

n∑
j=1

Akj xj +

n∑
i=1

xiAik

= (Ax)k + (A⊤x)k

= (Ax+A⊤x)k

= ((A+A⊤)x)k

where δik denotes the Kronecker delta.

Collecting these components into a row vector gives

∂f

∂x
=
[

∂f
∂x1

· · · ∂f
∂xn

]
=
[
((A+A⊤)x)1 · · · ((A+A⊤)x)n

]
= ((A+A⊤)x)⊤

= x⊤(A+A⊤)⊤

= x⊤(A+A⊤)

If furthermore A = A⊤, then
∂

∂x

(
x⊤Ax

)
= 2x⊤A

1



1 Matrix Basics

Squared norm with a matrix. Let A ∈ Rm×n and b ∈ Rm. For

f(x) = ∥Ax− b∥2 = (Ax− b)⊤(Ax− b)

expand:
f(x) = x⊤A⊤Ax− 2 b⊤Ax+ b⊤b

Differentiate using the previous rules:

∂f

∂x
= x⊤

(
A⊤A+ (A⊤A)⊤

)
− 2 b⊤A

Since A⊤A is symmetric, (A⊤A)⊤ = A⊤A, hence

∂

∂x
∥Ax− b∥2 = 2x⊤A⊤A− 2 b⊤A = 2 (Ax− b)⊤A

1.2 Inverse

1.2.1 Properties

(sA)−1 = 1
s
A−1

1.2.2 Woodbury

says that the inverse of a rank-k correction of some matrix can be computed by doing a rank-k
correction to the inverse of the original matrix.

Let A ∈ Rn×n invertible, U ∈ Rn×k, C ∈ Rk×k invertible, V ∈ Rk×n. (Recall that the product
UCV has rank at most k.)

Then
(A+UCV )−1 = A−1 −A−1U

(
C−1 + V A−1U

)−1
V A−1

2



2 Introduction

2 Introduction

We have data values yi (e.g., measurements or samples) together with the corresponding data
sites xi. We want a model sf that matches the data according to a certain criterion.

We distinguish 2 cases, depending on our knowledge of the underlying data-generating process
f :

• f is unknown, we seek a model sf that allows extrapolation to unseen data sites. goodness
of fit may be defined in various ways.

• f is known, for example as the solution operator of a PDE, the goal is to build a surrogate
model sf that is cheaper to evaluate than f itself.

scattered: data sites not located on a uniform grid

data sites: X := {x1, . . . ,xN} ⊂ Ω ⊂ Rd

We start from the interpolation problem, which aims at exactly matching a given set of data:

Problem 2.1 (Scattered data interpolation). Given data (xi, yi), i = 1, . . . , N , with xi ∈ Rd

and yi ∈ R, find a continuous function sf such that

sf (xi) = yi, i = 1, . . . , N (2.1)
◀

A common solution to Problem 2.1 is to assume that sf is a linear combination of certain
functions φj :

sf (x) =

N∑
j=1

cjφj(x) (2.2)

Applying the interpolation condition (2.1) to (2.2) yields

Ac = y (2.3)

where the generalized Vandermonde matrix is given by

A := [φj(xi)]
N
i,j=1 =

φ1(x1) · · · φN (x1)
...

. . .
...

φ1(xN ) · · · φN (xN )

 (2.4)

Problem 2.1 is well-posed (i.e. a solution exists and is unique), iff A is non-singular.

Example 2.1 (Polynomial interpolation). Given x1, . . . , xN ∈ R and y1, . . . , yN ∈ R, find a
polynomial p ∈ ΠN−1 := span{1, x, . . . , xN−1} such that p(xi) = yi, i = 1, . . . , N . With respect
to the monomial basis φj(x) = xj−1, j = 1, . . . , N , the Vandermonde matrix is given by

A =

1 x1 · · · xN−1
1

...
...

...

1 xN · · · xN−1
N

 ∈ RN×N

It can be shown that
det(A) =

∏
1≤i<j≤N

(xj − xi)

Therefore, we have det(A) ̸= 0 whenever xi ̸= xj for i ̸= j, which implies the well-posedness of
the polynomial interpolation problem. ◀

Generalizing the ideas of Example 2.1 yields the following concept:

Definition 2.2 (Haar space). Let V ⊂ C(Ω) be a finite-dimensional function space with
basis {φ1, . . . , φN}. V is a Haar space, iff det(A) ̸= 0 for every set of mutually distinct points
x1, . . . ,xN ∈ Ω, where A = [φj(xi)]

N
i,j=1 is the corresponding generalized Vandermonde matrix

from (2.4). ◀

We have the following negative result:

3



2 Introduction

Theorem 2.1 (Mairhuber-Curtis). If Ω ⊂ Rd, d > 1, contains an interior point, then there
exist no Haar spaces except for one-dimensional ones. ◁

Proof (Contradiction). Let d > 1 and assume that there exists a Haar space V ⊂ C(Ω) with
basis {φ1, . . . , φN} where N > 1. Let x1, . . . ,xN ∈ Ω be a set of mutually distinct interior
points. By assumption, det(A) ̸= 0.

Now consider a simple closed path p connecting only x1 and x2:

Rd

Ω

x1

x2
p

x′
1

x′
2

We can interchange the positions of x1 and x2, effectively swapping the first two rows of A, by
continuously moving along p. This in turn changes the sign of det(A).

Since φj(·), p and det(·) are all continuous functions, there must exist x′
1,x

′
2 on p such that

det(A′) = 0 for the corresponding generalized Vandermonde matrix A′, which contradicts the
assumption that V is a Haar space. □

Theorem 2.1 implies that if we want to have a well-posed multivariate interpolation problem,
we cannot choose the basis in advance, as we did in Example 2.1. Instead, the basis should
depend on the data locations xi.

Example 2.2 (Interpolation by distance matrices). Given data sites x1, . . . , xN ∈ R and
values y1, . . . , yN ∈ R, we make the ansatz

sf (x) =

N∑
j=1

cj |x− xj |

which amounts to the linear spline interpolant if we solve (2.1). For d > 1, this can be
generalized to:

sf (x) =

N∑
j=1

cj∥x− xj∥2
◀

The basis functions in Example 2.2 are examples of:

Definition 2.3 (Radial basis function). A function K : Rd → R is called radial, iff there
exists a univariate function k : [0,∞) → R such that K(x) = k(r), where r := ∥x∥ and ∥ · ∥ is
any norm on Rd. We say that φj(x) = K(x− xj), j = 1, . . . , N , are RBFs. ◀

Definition 2.4. A function K : Rd → R is called positive semi-definite, iff the generalized
Vandermonde matrix A = [φj(xi)]

N
i,j=1 = [K(xi −xj)]

N
i,j=1 is symmetric positive semi-definite

any mutually distinct x1, . . . ,xN ∈ Rd and any N ∈ N. It is called positive definite, iff A is
symmetric positive definite. ◀

Example 2.3 (Matérn kernels). The Matérn kernels

kν(r) =
21−ν

Γ(ν)

(√
2νr

ℓ

)ν

Bν

(√
2νr

ℓ

)
, ν, ℓ > 0

where Bν is the modified Bessel function of the second kind of order ν, are positive definite. In
particular, k1/2(r) = exp(−r/ℓ) and k∞(r) = exp(−r2/(2ℓ2)). ◀

Fact 2.2.

(1) If K1, . . . ,Kn are positive semi-definite and cl ≥ 0, l = 1, . . . , n, then K =
∑n

l=1 clKl is
also positive semi-definite. If at least one Kl is positive definite and cl > 0, then K is
positive definite.

(2) If K is positive semi-definite, then K(0) ≥ 0.

4



2 Introduction

(3) If K is positive semi-definite, then K(x) = K(−x).

(4) Any positive semi-definite function is bounded, i.e., |K(x)| ≤ K(0).

(5) If K is positive semi-definite with K(0) = 0, then K ≡ 0.

(6) The product of positive (semi-)definite functions is positive (semi-)definite. ◁

For the corresponding Vandermonde matrix A = [K(xi −xj)]
N
i,j=1, Fact 2.2 can be interpreted

as follows. (1) states that if A1, . . . ,An are symmetric positive semi-definite and cl ≥ 0, then
A =

∑n
l=1 clAl is symmetric positive semi-definite. If at least one Al is symmetric positive

definite and cl > 0, then A is symmetric positive definite. (2) means that the diagonal entries
satisfy Akk ≥ 0 for all k. (3) means that A is symmetric, i.e., Aij = Aji. (4) means that
|Aij | ≤ Akk for all i, j, k. (5) means that A = 0 if Akk = 0. (6) corresponds to the fact
that the entrywise product of symmetric positive (semi-)definite matrices is symmetric positive
(semi-)definite.

5



3 Scattered data interpolation with polynomial precision

3 Scattered data interpolation with polynomial precision

Often it is desirable that an approximation can represent polynomials exactly. As we have seen
in Theorem 2.1, in this case the interpolation points need to be chosen carefully.

3.1 Unisolvency

We define xα := xα1
1 · · ·xαd

d for x ∈ Rd and a multi-index α ∈ Nd
0.

Definition 3.1 (q-unisolvent). We call a set X = {x1, . . . ,xN} ⊂ Rd q-unisolvent, iff the
only polynomial p ∈ Πd

q := span{xα : α ∈ Nd
0, ∥α∥1 ≤ q} interpolating zero data on X is p ≡ 0.

This means that the matrix
P :=

[
xα

i

]
i=1,...,N
∥α∥1≤q

∈ RN×mq (3.1)

has full column rank mq := dimΠd
q =

(
q+d
d

)
. ◀

Remark 3.1. For d = 1, a set X = {x1, . . . , xN} ⊂ R is q-unisolvent iff N ≥ mq = q + 1 and
the points are pairwise distinct (a nonzero univariate polynomial of degree ≤ q has at most q
distinct roots).

For general d ≥ 1, the condition N ≥ mq = dimΠd
q is necessary: if N < mq, then P ∈ RN×mq

cannot have full column rank, hence there exists a nonzero p ∈ Πd
q such that p(xi) = 0 for all

xi ∈ X.

In contrast to the one-dimensional case, for d > 1 the condition N ≥ mq is not sufficient.
The reason is that a nonzero multivariate polynomial may vanish on infinitely many points
(e.g. along an algebraic curve or surface). Concretely, if there exists a nonzero p ∈ Πd

q with
X ⊂ Z(p) := {x ∈ Rd : p(x) = 0}, then X is not q-unisolvent. ◀

3.2 Interpolation with polynomial precision

Taking polynomials into account for the approximation gives rise to a specific version of Prob-
lem 2.1:

sf (x) =

N∑
j=1

cjφj(x) +

mq∑
k=1

dkpk(x) (3.2)

for a basis {p1, . . . , pmq} of Πd
q and q ≥ 0.

Enforcing the interpolation conditions sf (xi) = yi for i = 1, . . . , N leads to a linear system of
N equations for N +mq unknowns. To determine the remaining mq coefficients, we add the
additional conditions

N∑
j=1

cjpk(xj) = 0 for k = 1, . . . ,mq (3.3)

Remark 3.2. The constraints (3.3) prevent a non-unique decomposition between the RBF
part and the polynomial part of the ansatz (3.2). Without (3.3), one can often trade off
polynomial pieces between the two parts in (3.2) and still hit the same data values (non-
uniqueness). (3.3) forces the RBF coefficient vector c to be orthogonal (in the discrete sense)
to all polynomials in Πd

q , so the polynomial component is carried purely by d. ◀

Introducing the matrices

A :=
[
φj(xi)

]N
i,j=1

∈ RN×N and P :=
[
pj(xi)

]
i=1,...,N
j=1,...,mq

∈ RN×mq

as well as the vectors c := [c1, . . . , cN ]⊤, d := [d1, . . . , dmq ]
⊤ yields the saddle point system[

A P

P⊤ 0

] [
c
d

]
=

[
y
0

]
(3.4)

Since we now solve the augmented system (3.4) instead of (2.3), we don’t need K to be positive
definite anymore - it’s enough for K to be conditionally positive definite of order (q + 1)
(Definition 3.2), as we will see in Theorem 3.2.

6



3 Scattered data interpolation with polynomial precision

3.3 Conditionally positive definite functions

Definition 3.2. A function K : Rd → R is called conditionally positive definite of order
(q + 1), iff for any mutually distinct points x1, . . . ,xN ∈ Rd and any N ∈ N the generalized
Vandermonde matrix A = [K(xi − xj)]

N
i,j=1 satisfies

c⊤Ac ≥ 0 for any c ∈ kern(P⊤) (3.5)

where P = [xα
i ]i=1,...,N, ∥α∥1≤q is the polynomial Vandermonde matrix from Definition 3.1,

Equation 3.1. It is called strictly conditionally positive definite, iff equality in (3.5) only holds
for c = 0. ◀

We have the following relation between conditionally positive definite functions.

Fact 3.1. A function that is (strictly) conditionally positive definite of order (q + 1) is also
(strictly) conditionally positive definite of any higher order. In particular, a function that is
(strictly) conditionally positive definite of order 1 is (strictly) conditionally positive definite of
any order. ◁

Proof. Let r ≥ q. Since Πd
q ⊆ Πd

r , the columns of P q form a subset of the columns of P r.
So a vector that is orthogonal to all columns of P r is also orthogonal to all columns of P q.
Consequently, kern(P⊤

r ) ⊆ kern(P⊤
q ). □

3.4 Well-posedness of the saddle point system

Definition 3.1 and Definition 3.2 now allow us to state the conditions under which the saddle
point system (3.4) is well-posed:

Theorem 3.2. Let K : Rd → R be strictly conditionally positive definite of order (q+1) and
let x1, . . . ,xN be q-unisolvent. Then, the linear system (3.4) is uniquely solvable. ◁

Proof. To prove the assertion, we show that the kernel of the matrix in (3.4) consists of only
the zero vector 0N+mq :[

A P

P⊤ 0

] [
c
d

]
=

[
0N

0mq

]
⇔

{
Ac+ Pd = 0N

P⊤c = 0mq

To find c, we multiply the top equation by c⊤ from the left, yielding

c⊤Ac+ c⊤Pd = 0

From the bottom equation, we have P⊤c = 0 ⇔ c⊤P = 0⊤. Consequently, we infer c⊤Ac = 0.
Since K is strictly conditionally positive definite of order (q + 1), this implies c = 0N .

To find d, we insert c = 0N into the top equation, yielding

Ac+ Pd = Pd = 0N

By the q-unisolvency of x1, . . . ,xN , the matrix P has full column rank mq. Therefore, d = 0mq

is the only solution to the top block of (3.4). □

Remark 3.3. Definition 3.2 and Theorem 3.2 are a special, finite-dimensional, instance of
the inf-sup- or Ladyzhenskaya-Babuška-Brezzi (LBB) condition, which guarantees the well-
posedness of (infinite-dimensional) saddle point problems. ◀

Example 3.4. The generalized multiquadrics K(x) = (1 + ∥x∥2)β , 0 < β /∈ N, are strictly
conditionally positive definite of order ⌈β⌉.

The radial powers K(x) = ∥x∥β , 0 < β /∈ 2N are strictly conditionally positive definite of order
⌈β/2⌉. This means that the distance functions from Example 2.2 are conditionally positive
definite of order 1.

Duchon’s thin plate splines K(x) = ∥x∥2β log(∥x∥), β ∈ N∗, are strictly conditionally positive
definite of order β + 1. ◀
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4 Functional Analysis

4 Functional Analysis

4.1 Norm, Completeness, Inner product

Definition 4.1 (Norm). If V is a vector space over F1, then a function ∥ · ∥ : V → R≥0 is
called a norm if

• ∥x∥ = 0 ⇔ x = 0 (positive definite)

• ∥λx∥ = |λ|∥x∥ (homogeneous)

• ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (triangle inequality)

for all x, y ∈ V and λ ∈ F. A vector space on which a norm is defined is called a normed
space. ◀

The function spaces used in functional analysis are mostly infinite-dimensional. Therefore, the
norm and the notion of convergence alone are not sufficient to obtain powerful results.

A normed space can be completed by adding a limit for every Cauchy sequence that does not
converge, until all Cauchy sequences possess a limit. In this way one passes from a normed
space X to its completion X. If it is not clear which norm is meant, this is indicated as an
exponent:

X
∥·∥X (4.1)

If Y is the completion of X, one says that X is dense in Y .

Theorem 4.1. Let (X, ∥ · ∥X) be a normed space. There exists a Banach space (X, ∥ · ∥X)
called completion of X and an injective mapping J : X → X such that

J(v + w) = J(v) + J(w), J(λv) = λJ(v), ∥J(v)∥X = ∥v∥X

for all v, w ∈ X. This completion is unique up to isometry (rotation). ◁

Definition 4.2 (Inner product). If V is a vector space over F (R or C), then a function
⟨·, ·⟩ : V × V → F is called an inner product if

• ⟨x, y⟩ = ⟨y, x⟩ (conjugate symmetry)

• ⟨λx+ y, z⟩ = λ⟨x, z⟩+ ⟨y, z⟩ (linear in first argument)

• ⟨x, x⟩ ≥ 0 with equality if and only if x = 0 (positive definite)

for all x, y, z ∈ V and λ ∈ F: A vector space on which an inner product is defined is called an
inner product space. ◀

∥y∥

∥x∥

∥x+
y∥

Pythagorean formula

∥y∥

∥x∥

∥x+ y∥

∥x−
y∥

Parallelgram law

Theorem 4.2 (Parallelgram law). For any x, y in an inner product space, we have

∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2 (4.2)

◁

1henceforth, F is short for R or C
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4 Functional Analysis

Theorem 4.3 (Pythagorean formula). For any x, y in an inner product space with x ⊥ y (i.e.
they are orthogonal, i.e. ⟨x, y⟩ = 0), we have

∥x+ y∥2 = ∥x∥2 + ∥y∥2 (4.3)

◁

Theorem 4.4 (Cauchy-Schwarz inequality). For any x, y in an inner product space, we have

|⟨x, y⟩| ≤ ∥x∥ · ∥y∥ (4.4)

with equality if and only if x and y are linearly dependent. ◁

Definition 4.3 (Hilbert space). An inner product space that is complete with respect to the
norm induced by the inner product is called a Hilbert space. ◀

4.2 Bases in Hilbert spaces

In linear algebra the concept of a (Hamel) basis is central. For a Hamel basis of a vector space,
every vector can be represented as a finite linear combination of basis vectors. Since linear
algebra mostly deals with finite-dimensional spaces, this is no restriction there.

The spaces of interest in functional analysis, however, are all infinite-dimensional. While the
general statement still holds that such a space has a Hamel basis (that is, a linearly independent,
spanning (i.e. every vector can be represented as a finite linear combination) subset), every such
Hamel basis has infinitely many elements. Moreover: Those spaces that possess a countable
Hamel basis are not complete (e.g. the space of trigonometric polynomials). One can show that
in an infinite-dimensional Banach space a Hamel basis is always uncountable. This disqualifies
the concept of a Hamel basis for functional analysis.

The idea of a Schauder basis is to drop the requirement that the representation of a vector
uses finitely many elements. Instead we represent the elements as series whose partial sums are
linear combinations of the basis vectors.

Definition 4.4 (Orthonormal basis). A subset B of a Hilbert space H is called an orthogonal
system if any two distinct elements of B are orthogonal, i.e., ⟨x, y⟩ = 0 if x ̸= y.

If there exists in a Hilbert space H an orthogonal system

B = {ek ∈ H : k ∈ N}

such that for every f ∈ H the representation

f =

∞∑
k=1

⟨f, ek⟩ek

holds, then B is called an orthonormal basis of H. ◀

In Hilbert spaces orthonormal bases replace the standard bases from linear algebra. That the
elements of a Orthonormal basis actually have norm 1 can be checked easily:

en =

∞∑
k=1

⟨en, ek⟩ek = ⟨en, en⟩en = ∥en∥2en =⇒ ∥en∥ = 1

Thus we have:

⟨ek, en⟩ = δkn =

{
1, k = n

0, k ̸= n
(4.5)

Theorem 4.5. The representation of a vector f in a Hilbert space with respect to an or-
thonormal basis is unique. ◁
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4 Functional Analysis

Proof. Consider the representation

f =

∞∑
k=1

ckek

for some coefficients (ck). Fix some index n ∈ N. Then for every N ≥ n we have

cn =

N∑
k=1

ckδkn =

N∑
k=1

ck⟨ek, en⟩ =

〈
N∑

k=1

ckek, en

〉
Letting N tend to infinity yields

cn = ⟨f, en⟩

where we used the continuity of the inner product in its first argument2 □

This uniqueness of the representation means that we have the technique of comparing coeffi-
cients at our disposal.

Example 4.1 (Fourier series). The prototype of such an orthonormal basis is the set

φk =
1√
2π

eikx, k ∈ Z, x ∈ (−π, π)

in the Hilbert space L2(−π, π). Here the series representation

f =

∞∑
k=−∞

⟨f, φk⟩φk

is the Fourier series expansion of f , where ⟨f, g⟩ =
∫ π

−π
f(x)g(x) dx. ◀

With arguments similar to the uniqueness of the representation above one proves Parseval’s
identity

∥f∥2 =

∞∑
k=1

|⟨f, ek⟩|2 (4.6)

Remark 4.2. In Definition 4.4 we implicitly built in that the orthonormal basis is countable.
This is not necessary, but the spaces with countable orthonormal bases, called separable spaces,
are the most important in practice. ◀

4.3 Operators

4.3.1 Linear bounded operators are continuous

Definition 4.5 (Boundedness, continuity). Let U and V be normed spaces. An operator
A : U → V is called bounded if there exists a constant MA > 0 such that

∥Au∥V ≤MA∥u∥U

for all u ∈ U . An operator A : U → V is called continuous if

lim
n→∞

(Aun) = A
(
lim

n→∞
un

)
for every sequence (un).

The set of linear bounded operators from U to V is denoted by B(U, V ). ◀

A linear, bounded operator is continuous:

∥Aun −Au∥V
linear
= ∥A(un − u)∥V

bounded
≤ MA ∥un − u∥U

where (un) is a sequence in U converging to u. The converse also holds: A linear continuous
operator is bounded.

The boundedness of an operator depends essentially on the underlying space and the norm used
(see Example 4.4).
2i.e. limm→∞⟨fm, g⟩ = ⟨limm→∞ fm, g⟩
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4 Functional Analysis

Caution 4.3. A bounded operator is something completely different from a bounded function.
For a bounded function, the image is a bounded set. For a bounded operator, every bounded
set is mapped to a bounded set. The image need not be bounded. Among linear bounded
operators only the zero operator has a bounded image. ◀

Example 4.4 (Differential operator). Consider the differential operator

d

dt
: C1([0, 1]) → C([0, 1]).

We can turn both spaces into normed spaces by equipping them with the maximum norm, i.e.

∥f∥∞ := max
t∈[0,1]

|f(t)|.

In this case the differential operator is not bounded, as can be seen from the sequence (fn) with
fn(t) = cos(nt). We have ∥fn∥∞ = 1 for all n, but ∥f ′

n∥∞ = maxt∈[0,1] |n sin(nt)|, which tends
to infinity as n→ ∞.

If, however, we equip C1([0, 1]) with the norm

∥f∥C1 := ∥f∥∞ + ∥f ′∥∞

then for every f ∈ C1([0, 1]) we trivially have∥∥∥∥ d

dt
f

∥∥∥∥
∞

= ∥f ′∥∞ ≤ ∥f∥C1 .

Thus the differential operator is bounded with M d
dt

= 1. ◀

4.3.2 Operator norm

The set B(U, V ) is itself again a vector space and we can also equip it with a norm:

Definition 4.6 (Operator norm). For a linear bounded operator A ∈ B(U, V ) we define

∥A∥ := sup
u∈U\{0}

∥Au∥V
∥u∥U

= sup
∥u∥U=1

∥Au∥V (4.7)
◀

If V is a Banach space, then B(U, V ) is also a Banach space. The Operator norm has all the
properties of a Norm. In addition, for the composition BA of two linear bounded operators
A : U → V and B : V →W the estimate

∥BA∥ ≤ ∥B∥ ∥A∥

holds.

4.3.3 Bounded inverse

Complete spaces have, among other things, the advantage that they ensure well-behaved prop-
erties of linear bounded operators. Consider the situation where we want to solve an operator
equation

Ax = y (4.8)

If the operator A is injective, then this equation has for every y from the image of A a unique
solution, i.e. the operator A possesses an inverse A−1. For the numerical solution of the
problem it would, however, be useful if this inverse were also continuous, because then small
errors in the right-hand side (the data) would change the solution of the equation only slightly.

Theorem 4.6 (Bounded inverse). If U and V are Banach spaces and A : U → V a bijective
linear bounded operator, then the inverse A−1 : V → U is also bounded (and hence continuous).

◁

Unfortunately, the assumptions in Theorem 4.6 are often not fulfilled in practice. For compact
operators, the image is never a complete space and hence their inverse is always unbounded.

11



4 Functional Analysis

4.3.4 Continuous extension of an operator

We consider a linear bounded operator A ∈ B(U, V ), where U and V are normed spaces. As
already mentioned, many important results require complete spaces (i.e. Banach spaces).

If U and V are not complete, they can be enlarged to their completions (4.1). Consider a
Cauchy sequence (un) from U . Then

∥Aun −Aum∥ = ∥A(un − um)∥ ≤ ∥A∥ ∥un − um∥

Thus (Aun) is a Cauchy sequence in V . The Cauchy sequence (un) has a limit in u ∈ U , the
Cauchy sequence (Aun) a limit v ∈ V . We set

Au = A
(
lim

n→∞
un

)
= lim

n→∞
Aun = v

and obtain an operator A : U → V with Au = Au for all u ∈ U . In other words: We extend
A continuously from U to U . This extension is unique and the norm of the operator does not
change, i.e. ∥A∥ = ∥A∥.

X Y

X Y

A

A

Usually, however, one uses the same symbol for the continuous extension as for the original
operator, i.e. one writes A again for A.

4.3.5 Neumann series

Theorem 4.7 (Perturbation lemma). If V is a Banach space and A : V → V a linear bounded
operator with ∥A∥ < 1, then

(idV −A)−1 =

∞∑
k=0

Ak

where the series converges in the operator norm. It holds that∥∥(idV −A)−1
∥∥ ≤ 1

1− ∥A∥ ◁

4.4 Functionals and distributions

Definition 4.7 (Functional). If V is a vector space over F, then a mapping φ : V → F is
called a functional. If φ is linear, it is called a linear functional or also a linear form. ◀

Example 4.5. When solving a linear operator equation of the form (4.8) one can proceed by
minimizing the norm of the residual, or equivalently its square

∥Ax− y∥2

This is a nonlinear functional that has the minimum 0 for a possible solution.

Sometimes minimizing only the residual leads to instabilities. One possibility for improvement
is the introduction of an additional penalty term

∥Ax− y∥2 + λ∥x∥2

with a suitably chosen constant λ > 0 (regularization). ◀
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4 Functional Analysis

4.4.1 Distributions

can be regarded as a generalization of functions.

We denote by C∞
0 (R) the space of infinitely differentiable functions with compact support (i.e.

there exists a compact interval I ⊂ R such that f(x) = 0 for all x /∈ I). The space C∞
0 (R) is

also called the space of test functions.

A sequence (φk) of test functions converges to φ ∈ C∞
0 (R) if there exists a compact interval

I ⊂ R such that for every order of derivative n ∈ N0

∥φ(n)
k − φ(n)∥I,∞

k→∞−−−−→ 0

and φk(x) = 0 for all x /∈ I. On the compact interval I every sequence of derivatives of the
(φk) therefore converges uniformly to the corresponding derivative of φ. Outside of I all these
functions vanish.

We cannot describe this notion of convergence by means of a norm.3 However, we can consider
functionals ψ : C∞

0 (R) → C that are continuous with respect to this notion of convergence.
From φk → φ we therefore require ψ(φk) → ψ(φ). The set D of all such continuous functionals
is called the space of distributions.

Example 4.6 (δ-distribution). A very simple distribution is the δ-distribution defined by

δ(φ) = φ(0), φ ∈ C∞
0 (R).

If (φk) is a sequence of test functions with φk → φ ∈ C∞
0 (R), then there is uniform convergence

on every compact interval that contains zero. Hence

lim
k→∞

δ (φk) = lim
k→∞

φk(0) = φ(0) = δ(φ).

This shows that δ is a continuous functional on the space of test functions. ◀

4.4.2 Regular distributions

Definition 4.8 (Regular distribution). A function that is integrable over every compact in-
terval is called locally integrable. For every locally integrable function f : R → C we obtain a
corresponding distribution by

ψf (φ) :=

∫ ∞

−∞
f(x)φ(x) dx, φ ∈ C∞

0 (R)

We also write
ψf (φ) = ⟨f, φ⟩, φ ∈ C∞

0 (R)

Two different locally integrable functions yield different distributions. Distributions that can
be represented in this way are called regular distributions. ◀

Example 4.7 (Heaviside function). The function H : R → R,

H(x) =

{
0, x < 0,

1, x ≥ 0,

is also called the Heaviside function. Since it is piecewise continuous, it is integrable over every
compact interval I ⊆ R. Thus we can define a distribution ψH by

ψH(φ) =

∫ ∞

−∞
H(x)φ(x) dx, φ ∈ C∞

0 (R)

The integral exists because the domain of integration is in fact only the compact interval outside
of which φ vanishes, and the integrand is piecewise continuous there. The continuity of ψH with
respect to the convergence in C∞

0 (R) can be shown using the Lebesgue dominated convergence
theorem. ◀

By identifying the locally integrable functions with the regular distributions they generate, we
obtain an embedding of locally integrable functions into the distributions. Since all classical
function spaces contain only locally integrable functions, we thereby recover, for example, the
continuous or the continuously differentiable functions in the distributions.
3C∞

0 (R) is therefore not a normed space, and in particular not a Banach space or an inner product space.
The problem is that we consider infinitely many derivatives.
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Caution 4.8. Not every distribution is regular! ◀

The δ-distribution is the classical example of a distribution that cannot be represented by a
locally integrable function. Nevertheless, especially among practitioners, the notations

δ(φ) = ⟨δ, φ⟩ =
∫ ∞

−∞
δ(x)φ(x) dx = φ(0)

are common. Note, however, that in the penultimate notation this is by no means an integral
in the Lebesgue sense, but merely the evaluation of the functional δ at the point φ!

The integral notation has yet another background, and this is closely linked to the fact that
the δ-distribution is suitable for modeling instantaneous impulse transfer.

4.4.3 Derivative of distributions

The remarkable fact about distributions is that we can generalize many properties of classical
functions and transfer them to distributions.

For a continuously differentiable function f we consider the regular distribution generated by
f ′. We apply this distribution to a test function φ that vanishes outside an interval I = (a, b).
By integration by parts we obtain〈

f ′, φ
〉
=

∫
I

f ′(x)φ(x) dx

= [f(x)φ(x)]ba −
∫
I

f(x)φ′(x) dx

= −
∫ ∞

−∞
f(x)φ′(x) dx = −

〈
f, φ′〉

since φ(a) = φ(b) = 0. Note that the notation in the last line is justified, because with φ the
derivative φ′ is again a test function.

Caution 4.9. An antiderivative of a test function is in general no longer a test function. ◀

For every continuously differentiable function f the equation〈
f ′, φ

〉
= −

〈
f, φ′〉 , φ ∈ C∞

0 (R),

holds, which establishes a relation between the distribution given by f ′ and that given by f .
Conversely, this relation characterizes function and derivative.

With this equation we can generalize the concept of the derivative: We use it to define a
derivative in the distributional sense for an arbitrary distribution.

Definition 4.9 (Distributional derivative). If d is a distribution, then its derivative d′ is
defined by

⟨d′, φ⟩ := −⟨d, φ′⟩, φ ∈ C∞
0 (R) ◀

Example 4.10.

• The Heaviside function H is not continuously differentiable. However, we can determine
its derivative in the distributional sense. For φ ∈ C∞

0 (R) we have

⟨H ′, φ⟩ = −⟨H,φ′⟩ = −
∫ ∞

−∞
H(x)φ′(x) dx

= −
∫ ∞

0

φ′(x) dx = − [φ(x)]∞0 = φ(0) = ⟨δ, φ⟩

Thus the derivative of the Heaviside function is the δ-distribution.

• The derivative of the δ-distribution can be written down immediately. For φ ∈ C∞
0 (R)

we have
⟨δ′, φ⟩ = −⟨δ, φ′⟩ = −φ′(0) ◀

There are no restrictions in the definition of the distributional derivative. Every distribution is
differentiable in the distributional sense arbitrarily many times.
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4.5 Operators in Hilbert spaces

Due to the inner product, in Hilbert spaces it is possible to adopt many statements and argu-
ments from analytic geometry. However, because of the infinite dimension of function spaces
there are also differences in the chains of argument.

4.5.1 Orthogonal projection

Let H be an arbitrary Hilbert space and U ⊂ H a closed subspace. U is therefore itself again a
Hilbert space. We now want to know whether for an arbitrary x ∈ H there exists a û ∈ U that
has minimal distance to x, i.e.

∥x− û∥ ≤ ∥x− u∥ ∀u ∈ U (4.9)

We now show that such a û exists and is unique.

To this end we construct two sequences recursively. We set a0 = 0 and b0 = ∥x− u0∥ for some
u0 ∈ U . We define

cn =
an−1 + bn−1

2

and check whether cn ≤ ∥x − u∥ holds for all u ∈ U . If yes, we set an = cn and bn = bn−1,
otherwise an = an−1 and bn = cn.

(an) is monotonically increasing and bounded above by b0, (bn) is monotonically decreasing
and bounded below by a0 = 0. By the monotone convergence criterion both sequences are
convergent, and with a proof by contradiction one can also show that they converge to the
same limit ρ ≥ 0, which we call the distance of x to U .

Analogous to the construction of (bn) we also obtain a sequence (un) from U with ∥x−un∥ → ρ.
The parallelogram identity now yields

∥un − um∥2 = ∥un − x− (um − x)∥2

= 2∥un − x∥2 + 2∥um − x∥2 − 4
∥∥∥un + um

2
− x
∥∥∥2

≤ 2∥un − x∥2 + 2∥um − x∥2 − 4ρ2

where the right-hand side converges to 0 as n,m → ∞. Thus (un) is Cauchy and hence
has a limit û ∈ U . This proves the existence of a best approximation (4.9), because by our
construction we have

∥x− û∥ = ρ ≤ ∥x− u∥ (4.10)

for all u ∈ U .

Moreover, x − û is orthogonal to U . Indeed, choose an arbitrary v ∈ U and set in (4.10)
u = û+ αv ∈ U , then

∥x− û∥2 ≤ ∥x− û− αv∥2

= ∥x− û∥2 − 2Re(α⟨x− û, v⟩) + |α|2∥v∥2
(4.11)

where the right-hand side is a quadratic function in α ∈ F that attains its minimum at

α =
⟨x− û, v⟩

∥v∥2

(4.11) must hold for all α ∈ F and in particular also for this minimizer. Inserting this choice of
α into (4.11) we obtain

∥x− û∥2 ≤ ∥x− û∥2 − |⟨x− û, v⟩|2

∥v∥2

which is only possible if the numerator is zero. Since v ∈ U was arbitrary, it follows that

⟨x− û, v⟩ = 0 (4.12)
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for all v ∈ U . The best approximation û is also unique, as can be shown using the Pythagorean
theorem.

O

x

û

Orthogonal projection P : H → U

Subspace U

Thus, by the assignment x 7→ û we have determined a mapping P : H → U .

Theorem 4.8 (Orthogonal projection). If U is a closed subspace of a Hilbert space H, then
there exists a P : H → U with the property

∥x− Px∥ ≤ ∥x− u∥

for all u ∈ U . The operator P is linear and bounded with ∥P∥ = 1. Moreover,

⟨x− Px, u⟩ = 0

for all u ∈ U . ◁

From Theorem 4.8 it follows that one can carry out an orthogonal decomposition in Hilbert
spaces. If U is a closed subspace of H, one defines the orthogonal complement

U⊥ := {v ∈ H : ⟨v, u⟩ = 0 ∀u ∈ U}

which is likewise a closed subspace of H. For x ∈ H, for example, x−Px ∈ U⊥. Thus every x
can be written uniquely as

x = u+ v

with u ∈ U and v ∈ U⊥. Here u = Px and v = x− Px.

4.5.2 Continuous linear forms

Theorem 4.9 (Riesz representation theorem). In a Hilbert space H for every continuous
linear form φ : H → F there exists exactly one z ∈ H such that

φ(f) = ⟨f, z⟩ (4.13)

for all f ∈ H. Conversely, for every z ∈ H a continuous linear form is given by ⟨·, z⟩.

In more operator-theoretic terms: There is an isometric isomorphism

J : H′ → H (4.14)

such that
φ(f) = ⟨f, (Jφ)⟩ (4.15)

for all f ∈ H and all φ ∈ H′, where H′ is the dual space of H, i.e. the space of all continuous
linear forms on H. ◁

For the proof one uses the fact that the null space N of a continuous linear form φ, N = {f ∈
H | φ(f) = 0}, forms a closed subspace and its orthogonal complement N⊥ has dimension 1.
From an element of N⊥ the vector z belonging to φ can be constructed.
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5 Reproducing kernel Hilbert spaces

Definition 5.1 (RKHS). Let (H, ⟨·, ·⟩H) be real Hilbert space of functions f : Ω → R. A
function K : Ω× Ω → R is a reproducing kernel for H, iff

1. K(x, ·) ∈ H for all x ∈ Ω (“kernel sections live in the space”)

2. ⟨K(x, ·), f⟩H = f(x) for all f ∈ H and all x ∈ Ω (reproducing property)

If H exhibits a reproducing kernel, we call it a reproducing kernel Hilbert space. ◀

Vector Space → linear combinations

Normed Space → length, distance, convergence

Banach Space
→ completeness

Inner Product Space
→ angle, orthogonality

Hilbert Space
→ projection, ONB, Riesz

RKHS
→ ⟨Kx, f⟩ = f(x)

Theorem 5.1. The reproducing kernel of a RKHS is unique. ◁

Proof. Let K1 and K2 be two reproducing kernels of H. By 5.1.2, for all x ∈ Ω and f ∈ H,

⟨K1(x, ·), f⟩H = f(x) = ⟨K2(x, ·), f⟩H

Hence,
⟨K1(x, ·), f⟩H − ⟨K2(x, ·), f⟩H = ⟨K1(x, ·)−K2(x, ·), f⟩H = 0 (5.1)

This means that ⟨K1(x, ·)−K2(x, ·), f⟩H = 0 for all f ∈ H. Since K1(x, ·)−K2(x, ·) ∈ H by
5.1.1, we can set f = K1(x, ·)−K2(x, ·) in (5.1) to obtain

∥K1(x, ·)−K2(x, ·)∥2H = 0

so K1(x, ·) − K2(x, ·) = 0H and therefore K1(x, ·) = K2(x, ·) for all x ∈ Ω. Then, for every
x,y ∈ Ω,

K1(x,y) =
(
K1(x, ·)

)
(y) =

(
K2(x, ·)

)
(y) = K2(x,y)

hence K1 = K2. □

Recall the definition of the point evaluation functional δx : H → R, f 7→ δx(f) = f(x).

The existence of a reproducing kernel is equivalent to the point evaluation functional δx being
continuous for every x ∈ Ω, i.e., there exists Mx > 0 such that

|δxf | = |f(x)| ≤Mx∥f∥H for all f ∈ H

This means that δx is contained in the dual space H′ of H. By the Riesz representation
theorem, there exists (Jδx) ∈ H such that ⟨(Jδx), f⟩H = f(x) for all f ∈ H, i.e., (Jδx)(y) is
the reproducing kernel.

Theorem 5.2 (Properties of Reproducing Kernels). Let (H, ⟨·, ·⟩H) be a RKHS. Then

1. K(x,y) = ⟨K(y, ·),K(x, ·)⟩H for all x,y ∈ Ω

2. K(x,y) = K(y,x) for all x,y ∈ Ω

3. Convergence in H implies pointwise convergence, i.e., if ∥fn − f∥H → 0 as n → ∞, then
|fn(x)− f(x)| → 0 for all x ∈ Ω. ◁

Proof. Theorem 5.2.1 follows from Definition 5.1 if we set f = K(y, ·).

Theorem 5.2.2 follows from Theorem 5.2.1 and the symmetry of the inner product.

Theorem 5.2.3 follows from Definition 5.1.2 and the Cauchy-Schwarz inequality:

|fn(x)− f(x)| 5.1.2
= |⟨K(x, ·), fn − f⟩H| ≤ ∥K(x, ·)∥H∥fn − f∥H □
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5 Reproducing kernel Hilbert spaces

Remark 5.1. We have ∥K(x, ·)∥H =
√
K(x,x). ◀

The reproducing kernel of an RKHS is positive definite in the sense of Definition 2.4, if we
replace K(xi − xj) by K(xi,xj) everywhere.

Definition 5.2. Let K : Ω × Ω → R be a kernel. We say that K is positive definite, iff the
kernel matrix

K := [K(xi,xj)]
N
i,j=1 =

K(x1,x1) · · · K(x1,xN )
...

. . .
...

K(xN ,x1) · · · K(xN ,xN )

 (5.2)

is positive semi-definite for any mutually distinct x1, . . . ,xN and any N ∈ N. It is called strictly
positive definite if the kernel matrix is positive definite. ◀

The following lemma is a direct consequence of the reproducing property 5.1.2 and characterizes
the kernel matrix.

Lemma 5.3. Suppose that (H, ⟨·, ·⟩H) is a RKHS with reproducing kernel K : Ω × Ω → R.
Given a set of mutually distinct points x1, . . . ,xN , we have

K = ⟨Φ,Φ⊤⟩H :=

 ⟨φ1, φ1⟩H · · · ⟨φ1, φN ⟩H
...

. . .
...

⟨φN , φ1⟩H · · · ⟨φN , φN ⟩H

 (5.3)

where φi := Φ(xi) ∈ H with Φ : Ω → H, x 7→ K(x, ·) is the canonical feature map4. The
vector Φ := [φ1, . . . , φN ]⊤ ∈ HN is called the canonical feature vector. ◁

Lemma 5.3 corresponds more or less the kernel trick.

Theorem 5.4. Suppose that (H, ⟨·, ·⟩H) is a RKHS with reproducing kernel K : Ω×Ω → R.
Then, K is positive definite. Moreover, K is strictly positive definite iff δx1 , . . . , δxN are linearly
independent for any choice of mutually distinct x1, . . . ,xN ∈ Ω and any N ∈ N. ◁

The evaluation functionals δx1 , . . . , δxN are linearly independent if no nontrivial linear combi-
nation of them produces the zero functional in H′, i.e.,

N∑
i=1

ciδxi = 0H′ =⇒ c1 = · · · = cN = 0

where 0H′ is the zero vector of the dual space H′, i.e., the functional that maps every vector
f ∈ H to the scalar 0 ∈ R. So the LHS above means

∑N
i=1 ciδxi(f) = 0 for all f ∈ H.

Proof. Let x1, . . . ,xN be mutually distinct points in Ω and let c ∈ RN with c ̸= 0. For the
kernel matrix (5.3), we have

c⊤Kc = c⊤⟨Φ,Φ⊤⟩Hc = ⟨c⊤Φ,Φ⊤c⟩H = ⟨Φ⊤c,Φ⊤c⟩H = ∥Φ⊤c∥2H ≥ 0 (5.4)

i.e. K is positive definite.

To show the second part, assume that K is not strictly positive definite. Hence, there exists a
vector c ∈ RN \ {0} such that c⊤Kc = 0. (5.4) implies ∥Φ⊤c∥2H = 0 and thus Φ⊤c ≡ 0H. So,

0 = ⟨f, 0H⟩H = ⟨f,Φ⊤c⟩H =

〈
f,

N∑
i=1

ciK(xi, ·)

〉
H

=

N∑
i=1

ci⟨f,K(xi, ·)⟩H =

N∑
i=1

cif(xi) =

N∑
i=1

ciδxi(f)

for all f ∈ H. Consequently, we have∥∥∥∥∥
N∑
i=1

ciδxi

∥∥∥∥∥
H′

(4.7)
= sup

0̸=f∈H

∣∣∣∑N
i=1 ciδxi(f)

∣∣∣
∥f∥H

= 0
Def 4.1
=⇒

N∑
i=1

ciδxi ≡ 0H′

which implies the linear dependence of the point evaluation functionals δxi(f), i = 1, . . . , N ,
since c ̸= 0. The converse direction follows analogously. □

4in Machine Learning jargon

18



5 Reproducing kernel Hilbert spaces

The reverse statement of Theorem 5.4 is also correct: Each strictly positive definite kernel can
be associated to an RKHS, its native space. Motivated by the fact that for f =

∑N
i=1 ciK(xi, ·)

we have ∥f∥2H = c⊤Kc5, we define the linear space

HK(Ω) :=

{
N∑
i=1

ciK(xi, ·) : ci ∈ R, xi ∈ Ω, N ∈ N

}
(5.5)

equipped with the bilinear form

⟨f, g⟩K =

〈
N∑
i=1

ciK(xi, ·),
M∑
j=1

djK(yj , ·)

〉
K

:= c⊤
[
K(xi,yj)

]N,M

i=1,j=1
d (5.6)

where M = N = ∞ is possible.

Theorem 5.5. If K : Ω×Ω → R is symmetric and strictly positive definite, then the bilinear
form ⟨·, ·⟩K defined in (5.6) defines an inner product on HK(Ω). Moreover, HK(Ω) is a pre-
Hilbert space with reproducing kernel K. ◁

Proof. Symmetry follows directly from the symmetry of K. Positive definiteness follows from
the strict positive definiteness of K according to

⟨f, f⟩K = ⟨Φ⊤c,Φ⊤c⟩K = c⊤K c > 0

for all f = Φ⊤c =
∑N

i=1 ciK(xi, ·) ̸= 0HK(Ω). Hence ⟨·, ·⟩K is an inner product.

Finally, for any y ∈ Ω, the reproducing property is obtained by

⟨K(y, ·), f⟩K = 1 [K(y,xj)]
N
j=1 c =

N∑
j=1

cjK(y,xj) =

N∑
j=1

cjK(xj ,y) = f(y)

for all f =
∑N

j=1 cjK(xj , ·) ∈ HK(Ω). □

Theorem 5.5 provides that (HK(Ω), ⟨·, ·⟩K) is a pre-Hilbert space, hence it is not necessarily
complete. But as we know from Theorem 4.1, each normed space exhibits a completion that is
unique up to isometry.

Definition 5.3 (Native Space). The completion NK(Ω) := HK(Ω)
∥·∥K with respect to the

norm ∥f∥K :=
√

⟨f, f⟩K is called the native space of K. ◀

5.1 Spectral POV

Another characterization of the native space is given by the eigenfunctions of the linear opera-
tor

TK : L2(Ω) → L2(Ω), (TKv) (x) :=

∫
Ω

K(x,y)v(y)dy

Fact 5.6 (Mercer). Let K ∈ C(Ω × Ω) be a continuous and positive definite kernel. Then,
there holds

K(x,y) =
∞∑
i=1

λiϕi(x)ϕi(y),

where {(λi, ϕi)}∞i=1 are the eigen-pairs of the compact operator TK . ◁

The previous fact allows for a spectral characterization of the native space. To this end, we
endow

H :=

{
f : Ω → R : f =

∞∑
i=1

ciϕi, ci ∈ R

}
with the inner product

⟨f, g⟩H =

〈
∞∑
i=1

ciϕi,

∞∑
i=1

diϕi

〉
H

:=

∞∑
i=1

cidi
λi

=

∞∑
i=1

⟨f, ϕi⟩L2(Ω)⟨g, ϕi⟩L2(Ω)

λi

5i.e. motivated by the kernel trick
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5 Reproducing kernel Hilbert spaces

There holds

⟨K(x, ·), f⟩H =

∞∑
i=1

⟨K(x, ·), ϕi⟩L2(Ω)⟨f, ϕi⟩L2(Ω)

λi

=

∞∑
i=1

⟨
∑∞

j=1 λjϕj(x)ϕj(·), ϕi⟩L2(Ω)⟨f, ϕi⟩L2(Ω)

λi

=

∞∑
i=1

λiϕi(x)⟨f, ϕi⟩L2(Ω)

λi
=

∞∑
i=1

ciϕi(x) = f(x)

Consequently, we may set ⟨·, ·⟩NK(Ω) := ⟨·, ·⟩H and obtain

NK(Ω) =
{
f ∈ L2(Ω) : ⟨f, f⟩NK(Ω) <∞

}
.
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6 Approximation results

Definition 6.1. Given Ω ⊂ Rd and X = {x1, . . . ,xN} ⊂ Ω, we introduct the fill distance

hX,Ω := sup
x∈Ω

min
xi∈X

∥x− xi∥2 (6.1)

and the separation distance
qX := min

xi ̸=xj

∥xi − xj∥2 (6.2)

We call X quasi-uniform, iff there exists a constant c ≥ 1 such that qX/c ≤ hX,Ω ≤ cqX . ◀

Rd

Ω

hX,Ω

qX

We start by introducing the concept of Lagrange bases. To this end, we recall the kernel
matrix

K := [K(xi,xj)]
N
i,j=1

from Definition 5.2 and the feature vector

Φ(x) = [K(xi,x)]
N
i=1 = [φ1(x), . . . , φN (x)]⊤

Further, we denote the canonical basis in RN by e1, . . . , eN .

Theorem 6.1. Let K be a strictly positive definite kernel. Then, for any mutually distinct
points x1, . . . ,xN , the Lagrange basis is given by

ℓj(x) :=

N∑
k=1

c
(j)
k K(xk,x) = c(j)Φ(x)

with c(j) := e⊤
j K

−1, j = 1, . . . , N . The functions ℓj satisfy ℓj(xi) = δij . ◁

Proof. There holds

ℓj(xi) = c(j)Φ(xi) = e⊤
j K

−1K:,i = e⊤
j K

−1Kei = e⊤
j ei = δij

since Φ(xi) is the i-th column of K. □

Given a function f : Ω → R we can write its interpolant according to

sf (x) =

N∑
j=1

f(xj)ℓj(x)

where x ∈ Ω.

To derive an error estimate in terms of the fill distance, an important tool is the

Definition 6.2 (power function). Let Ω ⊂ Rd and K : Ω × Ω → R be a continuous and
strictly positive definite kernel. Given any set X = {x1, . . . ,xN} of mutually distinct points,
the power function PK,X : Ω → R is defined as

PK,X(x) :=

∥∥∥∥∥K(x, ·)−
N∑

j=1

ℓj(x)K(xj , ·)

∥∥∥∥∥
NK(Ω)

(6.3)

where x ∈ Ω and ℓj are the Lagrange basis functions from Theorem 6.1. ◀
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6 Approximation results

The power function reflects how well the observations at X can approximate or predict the
value at a new point.

A direct calculation yields the following

Fact 6.2. Under the same assumptions as in Definition 6.2, we have

PK,X(x) =
√
K(x,x)−Φ(x)⊤K−1Φ(x) (6.4)

for all x ∈ Ω, and, hence, 0 ≤ PK,X(x) ≤
√
K(x,x). ◁

The point-wise approximation error can be bounded by the power function.

Theorem 6.3. Under the same assumptions as in Definition 6.2, we have

|f(x)− sf (x)| ≤ PK,X(x)∥f∥NK(Ω)

for every f ∈ NK(Ω) and x ∈ Ω. ◁

Proof. Using the reproducing property from Definition 5.1, we obtain

sf (x) =

N∑
j=1

f(xj)ℓj(x) =

N∑
j=1

⟨K(xj , ·), f⟩NK(Ω)ℓj(x) =

〈
N∑

j=1

ℓj(x)K(xj , ·), f

〉
NK(Ω)

and thus

|f(x)− sf (x)| =

∣∣∣∣∣∣⟨K(x, ·), f⟩NK(Ω) −

〈
N∑

j=1

ℓj(x)K(xj , ·), f

〉
NK(Ω)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
〈
K(x, ·)−

N∑
j=1

ℓj(x)K(xj , ·), f

〉
NK(Ω)

∣∣∣∣∣∣
(4.4)
≤

∥∥∥∥∥K(x, ·)−
N∑

j=1

ℓj(x)K(xj , ·)

∥∥∥∥∥
NK(Ω)

· ∥f∥NK(Ω)

= PK,X(x) · ∥f∥NK(Ω)

by the Cauchy-Schwarz inequality. □

Fact 6.4. Let Ω ⊂ Rd satisfy an interior cone condition, i.e., there exists an angle α > 0 such
that the interior angle at every corner of Ω is bigger than α. Let K ∈ C2k(Ω×Ω) be a strictly
positive definite kernel. Then there exist constants CK , h0 > 0 such that

PK,X(x) ≤ CKh
k
X,Ω

whenever hX,Ω ≤ h0 ◁

Combining Theorem 6.3 and Fact 6.4 yields the final error estimate

Theorem 6.5. Let Ω ⊂ Rd satisfy an interior cone condition, K ∈ C2k(Ω × Ω) be a strictly
positive definite kernel and X = {x1, . . . ,xN} be a set of mutually distinct points. Then, we
have for every f ∈ NK(Ω)

|f(x)− sf (x)| ≤ CKh
k
X,Ω∥f∥NK(Ω)

for all x ∈ Ω whenever hX,Ω ≤ h0. ◁
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6.1 Connection to Gaussian processes

Let (S,F ,P) be a probability space.6

Definition 6.3 (Random variable). A random variable is a measurable map X : S → R. ◀

Consider a vector Z split into two parts Z1 and Z2, where

Z =

[
Z1

Z2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
(6.5)

The conditional distribution of Z2 given Z1 is also Gaussian:

Z2 | Z1 ∼ N
(
µ2 +Σ21Σ

−1
11 (Z1 − µ1), Σ22 −Σ21Σ

−1
11 Σ12

)
(6.6)

Definition 6.4 (Random function). A random function is a map f : Rd × S → R. For fixed
x ∈ Rd, f(x, ·) is a random variable; for fixed ω ∈ S, f(·, ω) is a deterministic function. ◀

Definition 6.5 (Gaussian process). A collection of random variables {f(x) | x ∈ Rd} is called
a Gaussian process if for all x1, . . . ,xm ∈ Rd,

[f(x1), . . . , f(xm)]

is multivariate Gaussian. It is characterized by its mean µ(x) = E[f(x)] and covariance function
k(x,x′) = Cov(f(x), f(x′)). ◀

Consider a Gaussian process with zero mean and covariance function k. Suppose we have
observed y := [y1, . . . , yn−1]

⊤ at points X := {x1, . . . ,xn−1}. We want to predict the value of
f at a new point x⋆ := xn, f⋆ := f(x⋆).

The covariance matrix is given by K =
[
k(xi,xj)

]n
i,j=1

and it can be partitioned as

K =

[
Kmm Km⋆

K⋆m K⋆⋆

]
(6.7)

where Kmm ∈ R(n−1)×(n−1) is the covariance on X, Km⋆ ∈ R(n−1)×1 contains the covariances
between X and x⋆, and K⋆⋆ ∈ R is the variance at x⋆.

Then:

(i) The conditional distribution of f⋆ given the observations y is Gaussian with

f⋆ | y ∼ N
(
K⋆mK−1

mmy, K⋆⋆ −K⋆mK−1
mmKm⋆

)
where the covariance term is the Schur complement (7.1) of Kmm in K.

(ii) Let Pk,X be the power function from Definition 6.2. Using the explicit formula (6.4),

Pk,X(x⋆)
2 = k(x⋆,x⋆)−Φ(x⋆)

⊤K−1
mmΦ(x⋆) = K⋆⋆ −K⋆mK−1

mmKm⋆

implying that the power function evaluated at x⋆ is exactly the conditional standard
deviation (posterior uncertainty) of the Gaussian process at x⋆ given the observations at
X.

6Usually, the sample space is denoted by Ω, but we already used this symbol for domains in Rd. Since
the event space F is a σ-algebra, (i.e., a collection of subsets of S that contains the empty set, is closed
under complementation and countable unions), it is sometimes denoted by Σ. By using F here, we avoid
confusion with the notation for the covariance matrix.
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7 Numerical methods

In this chapter, we focus on the situation where the basic or kernel function under consideration
is positive definite. As a consequence, the generalized Vandermonde or kernel matrix K =[
K(xi,xj)

]N
i,j=1

∈ RN×N is positive semi-definite. We need the following

Lemma 7.1. Let A be a symmetric and positive semi-definite matrix. Then, the Schur
complement of A1,1 in A

S := A2,2 −A2,1A
−1
1,1A1,2 (7.1)

is well defined for any block partitioning of

A =

[
A1,1 A1,2

A2,1 A2,2

]
for which A−1

1,1 exists. Moreover, A1,1 is always symmetric and positive semi-definite, while S
is symmetric and positive semi-definite. ◁

Proof. Let [ xy ] ∈ RN be partitioned similarly to A. Since[
A1,1 A1,2

A2,1 A2,2

]
= A = A⊤ =

[
A⊤

1,1 A⊤
2,1

A⊤
1,2 A⊤

2,2

]
we obtain

A1,1 = A⊤
1,1, A2,2 = A⊤

2,2, A1,2 = A⊤
2,1

Consequently, A1,1 is symmetric and there holds

0 ≤
[
x
0

]⊤
A

[
x
0

]
=

[
x
0

]⊤ [
A1,1x
A2,1x

]
= x⊤A1,1x

Therefore, A1,1 is positive semi-definite. In fact, it is even positive definite as A−1
1,1 exists by

assumption. Furthermore, there holds

S⊤ = A⊤
2,2 −A⊤

1,2A
−⊤
1,1 A

⊤
2,1 = A2,2 −A2,1A

−1
1,1A1,2 = S

Finally, we consider [ xy ] with x = −A−1
1,1A1,2y. This yields

0 ≤
[
x
y

]⊤
A

[
x
y

]
=

[
x
y

]⊤ [
A1,1x+A1,2y
A2,1x+A2,2y

]
=

[
x
y

]⊤ [ −A1,2y +A1,2y
−A2,1A

−1
1,1A1,2y +A2,2y

]
=

[
x
y

]⊤ [
0
Sy

]
= y⊤Sy

which yields the semi-definiteness of S. □

Given a positive semi-definite matrix A, successively reducing the Schur complement by set-
ting

A1 := A, ℓi :=
1√

a
(i)

π(i),π(i)

a
(i)

:,π(i), Ai+1 := Ai − ℓiℓ
⊤
i

for a permutation π of the set {1, . . . , N} leads to a representation

A =

rank(A)∑
i=1

ℓiℓ
⊤
i

given that all pivots a(i)π(i),π(i) are non-zero. In this case, also all matrices Ai, i = 1, . . . , rank(A)
are positive semi-definite. This can be seen by introducing the permutation matrix P :=[
eπ(1), . . . , eπ(N)

]⊤ and considering the matrix PAP⊤ in Lemma 7.1.

Remark 7.1. For π(i) = i, we obtain the well known Cholesky decomposition. ◀

Lemma 7.2. Let A be a symmetric and positive semi-definite matrix. Then, there holds

|ai,j | ≤
√
ai,i aj,j

for all i, j = 1, . . . , N . ◁
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Proof. The positive semi-definiteness of the Schur complement established by Lemma 7.1
holds true for any pivot element ai,i, i = 1, . . . , N . In particular, all diagonal elements of the
Schur complement have to be non-negative, which implies

0 ≤ aj,j −
a2i,j
ai,i

or |ai,j | ≤
√
ai,i aj,j

as claimed. □

A direct consequence of Lemma 7.2 is that the largest element of a positive semi-definite matrix
is always located on the diagonal, i.e.,

|ai,j | ≤
√
ai,i aj,j ≤ ai,i + aj,j

2
≤ max

i=1,...,N
ai,i.

Therefore, if all diagonal elements are zero, the matrix has to be the zero matrix. This motivates
the pivoted version of the Cholesky decomposition, Algorithm 1, which greedily removes the
largest element from the Schur complement.

Definition 7.1 (Biorthogonal basis). Let L,B ∈ RN×m. We say that the column vectors of
L and B form a biorthogonal basis of two subspaces L,B ⊆ RN if

B⊤L = Im

i.e., each pair of basis vectors satisfies b⊤i ℓj = δij where i, j = 1, . . . ,m and δij denotes the
Kronecker delta.

In contrast to an orthonormal basis, the vectors within each set {ℓi} or {bi} need not be
mutually orthogonal; only the cross-orthogonality between both sets is required. ◀

Remark 7.2. In the context of Algorithm 1, the matrix B can be interpreted as the dual
basis to L with respect to the Euclidean inner product, since B⊤L = Im implies that each bi
extracts the coefficient of ℓi from any linear combination of the columns of L. Hence, for any
v ∈ span(L), the coefficient vector in this basis is given by c = B⊤v, v = Lc. This duality
ensures numerical stability when orthogonality of L cannot be preserved. ◀

Algorithm 1 Pivoted Cholesky Decomposition

Require: symmetric and positive semi-definite matrix K ∈ RN×N , tolerance ε ≥ 0
Ensure: low-rank approximation K ≈ LL⊤ and biorthogonal basis B such that B⊤L = Im

1: Initialization: m := 1, d := diag(K), L := [], B := [], err := ∥d∥1
2: while err > ε do
3: determine π(m) := argmax1≤i≤N di

4: compute ℓm := 1√
dπ(m)

(
K −LL⊤) eπ(m) and bm := 1√

dπ(m)

(
I −BL⊤) eπ(m)

5: L := [L, ℓm], B := [B, bm]
6: d := d− ℓm ⊙ ℓm ▷ ⊙ denotes the Hadamard product
7: err := ∥d∥1, m := m+ 1

By the previous considerations (Lemma 7.1, Remark 7.1, Lemma 7.2), the pivoting strategy in
Algorithm 1 amounts to a total pivoting, which always eliminates the largest entry of the Schur
complement (7.1). Moreover, it also computes the biorthogonal basis associated to L.

Fact 7.3. For any ε ∈ R≥0, Algorithm 1 computes N × m-matrices B and L with m ≤
rank(K) such that K −LL⊤ is psd and

trace(K −LL⊤) ≤ ε

B⊤L = Im

KB = L

as can be proven by induction. ◁

Corollary 7.4. Let U = [b⊤π(1),:, . . . , b
⊤
π(m),:]

⊤ ∈ Rm×m be the first m rows7 of the matrix
that is obtained if we permute the rows of B by π. Then UU⊤ = [kπ(i),π(j)]

−1
i,j=1,...,m. ◁

7These are exactly the nonzero rows of B.
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Proof. W.l.o.g., we assume that π is the identity permutation, i.e., π(m) = m. Let

K =


K1,1 K1,2

K2,1 K2,2


, L =


L1

L2


m

N −m

where K1,1,L1 ∈ Rm×m. We have K1,1 = L1L
⊤
1 . Furthermore, Fact 7.3 yields

B⊤L =

[
U

0(N−m)×m

]⊤ [
L1

L2

]
=

 U⊤ 0




L1

L2


= U⊤L1 = Im

which shows U⊤ = L−1
1 or U = L−⊤

1 . Combining this with the previous argument yields

K−1
1,1 =

(
L1L

⊤
1

)−1

= L−⊤
1 L−1

1 = UU⊤ □

Remark 7.3. The matrix U is upper triangular since B is constructed such that bi,j = 0 for
all i < j in Algorithm 1. ◀

Remark 7.4. The well known Nyström method for the low-rank approximation of kernel
matrices randomly selects data sites xπ(1), . . . ,xπ(m) and computes the approximation

K ≈
[
K(xi,xπ(j))

]
i=1,...,n
j=1,...,m

[
K(xπ(i),xπ(j))

]−1

i,j=1,...,m

[
K(xπ(i),xj)

]
i=1,...,m
j=1,...,n

The previous corollary shows that this is equivalent to a pivoted Cholesky decomposition with
pivots π(1), . . . , π(m). ◀

Corollary 7.5. Let (H, ⟨·, ·⟩H) be an RKHS. Given the canonical freature vector Φ(x) :=
[K(xi,x)]

N
i=1, the Newton basis

N(x) := B⊤Φ(x) =

m∑
i=1

[
B⊤]

:,π(i)
φπ(i)(x) =

m∑
i=1

[
Bπ(i),:

]⊤
K(xπ(i),x) (7.2)

forms an orthonormal system in H, i.e., ⟨Ni, Nj⟩H = δij for i, j = 1, . . . ,m, where m =
rank(B). ◁

Proof. There holds

⟨N ,N⊤⟩H = B⊤⟨Φ,Φ⊤⟩HB = B⊤KB = B⊤L = Im

by the third part of Fact 7.3. □

Remark 7.5. We have

span{N1, . . . , Nm} = span{K(xπ(1), ·), . . . ,K(xπ(m), ·)} ⊂ span{φ1, . . . , φN} ◀

The orthogonal projection of a function f ∈ H onto the subspace spanned by N1, . . . , Nm is
computed by

Pf :=

m∑
i=1

Ni⟨Ni, f⟩H
5.1.2
= N⊤B⊤f = Φ⊤BB⊤f (7.3)

where f = [f(x1), . . . , f(xN )]⊤. In particular, there holds

[(Pf)(xi)]
N
i=1 = KBB⊤f = LB⊤f

Given a (low-rank) factorization of the kernel matrix K, we can directly compute the least
square solution to the linear system

Kc = f

26
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Theorem 7.6. Let K ≈ LL⊤ be the pivoted Cholesky decomposition of the kernel matrix
K. A minimum norm solution of the problem∥∥∥LL⊤x− f

∥∥∥
2
→ min

is given by

x† = L
(
L⊤L

)−2

L⊤f (7.4)

The cost for the computation of x† is O(Nm2) where m = rank(L). ◁

Proof. The Gaussian normal equations read

LL⊤LL⊤x = LL⊤b

Inserting x† from (7.4) yields

LL⊤LL⊤L
(
L⊤L

)−2

L⊤b = LL⊤b

which shows that x† solves the Gaussian normal equations and is consequently a minimum
norm solution. □

Remark 7.6. The matrix (L⊤L)−2 has condition number (κ(L))4 and therefore easily be-
comes ill-conditioned. To mitigate this, one may compute the QR-decomposition L = QR.
Then, there holds L⊤L = R⊤Q⊤QR = R⊤R. The action of (L⊤L)−2 can thus be computed
by solving two linear systems for R and R⊤ respectively.

Since these matrices are assumed to be relatively small, a robust solver is given by the (pseudo-
)inverse based on the singular value decomposition R = UΣV ⊤. There holds(

L⊤L
)−2

=
(
R⊤R

)−2

=
(
V Σ2V ⊤

)−2

= V Σ−4V ⊤.

This particularly allows to threshold small values in Σ−4. ◀
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8 Optimal recovery

We consider the following

Problem 8.1 (Optimal recovery). Given values fi := λi(f), i = 1, . . . , N , where {λ1, . . . , λN}
is a set of linearly independent linear functionals (called information functionals), how can we
best approximate the value λ(f) of a known functional λ for an unknown function f? ◀

In the Hilbert space setting, the set of all functions that are consistent with the given data

A := {g ∈ H : λi(g) = fi, i = 1, . . . , N}

forms an affine subspace of H. We are looking for the “least biased” among these functions.

As we will see in Theorem 8.4, the solution to this problem is given by the minimum-norm
interpolant, i.e., the function g⋆ ∈ H with

λi(g
⋆) = λi(f), i = 1, . . . , N (8.1)

and
∥g⋆∥H = min

g∈H:(8.1)
∥g∥H

Geometrically, this corresponds to the orthogonal projection of the origin 0H onto the affine
subspace A.

We present three corresponding optimality results for radial basis function interpolation. As a
preparation, we require two lemmata.

Lemma 8.1. Let K be a strictly positive definite kernel. Then

⟨sf , sf − g⟩NK(Ω) = 0 (8.2)

for all interpolants g ∈ NK(Ω) with g(xi) = f(xi) for i = 1, . . . , N . ◁

This is consistent with the geometric interpretation of sf being the orthogonal projection of 0H
onto the affine subspace A.

Proof. There holds

⟨sf , sf − g⟩NK(Ω) =

〈
N∑

j=1

cjK(xj , ·), sf − g

〉
NK(Ω)

=

N∑
j=1

cj⟨K(xj , ·), sf − g⟩NK(Ω)

=

N∑
j=1

cj
(
sf (xj)− g(xj)

)
= 0

since sf and g both interpolate f . □

Lemma 8.2. Let K be a strictly positive definite kernel. Then

⟨f − sf , h⟩NK(Ω) = 0 (8.3)

for all h ∈ span{φ1, . . . , φN}, where φk(·) := K(xk, ·). ◁

This means that the error f − sf is orthogonal to the finite-dimensional space spanned by the
basis functions. Geometrically, this means that sf corresponds to the orthogonal projection of
f onto span{φ1, . . . , φN}.

Proof.

⟨f − sf , h⟩NK(Ω) =

〈
f − sf ,

N∑
k=1

αkφk

〉
NK(Ω)

=

N∑
k=1

αk⟨φk, f − sf ⟩NK(Ω)

=

N∑
k=1

αk

(
f(xk)− sf (xk)

)︸ ︷︷ ︸
=0

= 0

since sf interpolates f . □
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8 Optimal recovery

A straightforward consequence is a Pythagorean theorem.

Corollary 8.3. There holds

∥f∥2NK(Ω) = ∥f − sf∥2NK(Ω) + ∥sf∥2NK(Ω)

◁

Proof.

∥f − sf∥2NK(Ω) = ⟨f − sf , f − sf ⟩NK(Ω)

= ⟨f, f⟩NK(Ω) − 2⟨f, sf ⟩NK(Ω) + ⟨sf , sf ⟩NK(Ω)

= ⟨f, f⟩NK(Ω) − 2⟨f, sf ⟩NK(Ω) + 2⟨sf , sf ⟩NK(Ω) − ⟨sf , sf ⟩NK(Ω)

= ∥f∥2NK(Ω) − 2 ⟨f − sf , sf ⟩NK(Ω)︸ ︷︷ ︸
(8.3)
= 0

−∥sf∥2NK(Ω)

= ∥f∥2NK(Ω) − ∥sf∥2NK(Ω)

since sf ∈ span{φ1, . . . , φN}. □

Theorem 8.4 (Optimality I). Let K be a strictly positive definite kernel. Then, given the
values f1, . . . , fN ,

∥sf∥NK(Ω) = min
g∈NK(Ω)
g(xj)=fj

∥g∥NK(Ω) (8.4)

i.e., the interpolant sf is the minimum-norm interpolant. ◁

Proof.
∥sf∥2NK(Ω) = ⟨sf , sf ⟩NK(Ω)

= ⟨sf , sf − g + g⟩NK(Ω)

= ⟨sf , sf − g⟩NK(Ω)︸ ︷︷ ︸
(8.2)
= 0

+⟨sf , g⟩NK(Ω)

= ⟨sf , g⟩NK(Ω)

By the Cauchy-Schwarz inequality (4.4),

∥sf∥2NK(Ω) ≤ ∥sf∥NK(Ω) ∥g∥NK(Ω)

Dividing by ∥sf∥NK(Ω) yields the assertion. □

Theorem 8.5 (Optimality II). Let K be a strictly positive definite kernel. Then sf is the
best approximation to f ∈ NK(Ω) within span{φ1, . . . , φN}, i.e.,

∥f − sf∥NK(Ω) ≤ ∥f − g∥NK(Ω)

for all g ∈ span{φ1, . . . , φN}. ◁

Proof. Since g − sf ∈ span{φ1, . . . , φN}, we have from (8.3) that

∥f − sf∥2NK(Ω) = ⟨f − sf , f − g + g − sf ⟩NK(Ω)

= ⟨f − sf , f − g⟩NK(Ω) + ⟨f − sf , g − sf ⟩NK(Ω)︸ ︷︷ ︸
(8.3)
= 0

= ⟨f − sf , f − g⟩NK(Ω)

By the Cauchy-Schwarz inequality (4.4),

∥f − sf∥2NK(Ω) ≤ ∥f − sf∥NK(Ω) ∥f − g∥NK(Ω)

which we divide by ∥f − sf∥NK(Ω) to obtain the assertion. □

Remark 8.1. The previous two optimality theorems also hold for strictly conditionally pos-
itive definite kernels, given that the point set X = {x1, . . . ,xN} is unisolvent. ◀

We state the last optimality theorem in the context of quasi-interpolation without proof.

29



8 Optimal recovery

Theorem 8.6 (Optimality III). Let K be strictly conditionally positive definite with respect
to P ⊂ C(Ω) and assume that X is P -unisolvent. Then for any fixed x ∈ Ω

sup
f∈NK(Ω)

∥f∥NK (Ω)=1

∣∣∣∣∣f(x)−
N∑

j=1

f(xj) ℓj(x)

∣∣∣∣∣ ≤ sup
g∈NK(Ω)

∥g∥NK (Ω)=1

∣∣∣∣∣g(x)−
N∑

j=1

g(xj) cj

∣∣∣∣∣
for any choice c1, . . . , cN ∈ R with c⊤P = 0. ◁
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9 Least squares approximation

As we have shown in the previous chapter, the kernel interpolation solves a constraint opti-
mization problem. We adopt this perspective here, but make the more general assumption that
our ansatz is of the form

sf,m :=

m∑
j=1

cjK(x̃j , ·)

where x̃1, . . . , x̃m are not necessarily contained in X. Then, we are looking for a vector c ∈ Rm

which minimizes the quadratic form
1

2
c⊤Qc

for some symmetric and positive definite matrix Q, subject to the linear constraints

Ac = f

with the generalized Vandermonde matrix A ∈ RN×m.

Remark 9.1. If Q is chosen as the kernel Gram matrix on the centers,

Q =
[
K(x̃i, x̃j)

]m
i,j=1

then the quadratic form c⊤Qc coincides with the squared RKHS (native space) norm of the
kernel expansion sf,m, as can be seen from

∥sf,m∥2NK(Ω) =

∥∥∥∥∥
m∑

j=1

cjK(x̃j , ·)

∥∥∥∥∥
2

NK(Ω)

=

〈
m∑
i=1

ciK(x̃i, ·),
m∑

j=1

cjK(x̃j , ·)

〉
NK(Ω)

=

m∑
i=1

m∑
j=1

cicj ⟨K(x̃i, ·),K(x̃j , ·)⟩NK(Ω)

=

m∑
i=1

m∑
j=1

cicjK(x̃i, x̃j)

=c⊤Qc

where we used the basic properties of Inner products and RKHSs

Hence minimizing 1
2
c⊤Qc selects, among all expansions satisfying the constraints, the inter-

polant of minimal native space norm. Typically, this leads to a smooth interpolant. ◀

This constraint optimization problem is solved by minimizing

L(c,λ) := 1

2
c⊤Qc− λ⊤(Ac− f)

with the Lagrange multipliers λ ∈ RN . The unique minimum of L(c,λ) is obtained from the
solution of the saddle point formulation[

Q −A⊤

A 0

] [
c
λ

]
=

[
0
f

]

The solution is obtained by block Gaussian elimination in accordance with

λ =
(
AQ−1A⊤)†f

c = Q−1A⊤λ

In the particular case that m = N , x̃i = xi, and A = Q = K, we find

c = λ = K−1f

as in the previous chapter. However, the presented approach is more general as it also considers
the cases N < m (underdetermined least squares) and N > m (overdetermined least squares),
where the matrix Q takes the role of a regularization term.
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9 Least squares approximation

In the case that Q =
[
K(x̃i, x̃j)

]m
i,j=1

represents the native space norm of the interpolant, we
obtain the least-squares problem

min
c∈Rm

1

2
∥Ac− f∥22 +

ω

2
∥sf,m∥2NK(Ω)

The ridge parameter ω controls the tradeoff between the smoothness and the fit of sf,m. Finally,
if we choose m = N , x̃i = xi, and A = Q = K, this minimization problem becomes

min
c∈RN

1

2
∥Kc− f∥22 +

ω

2
c⊤Kc

The first order optimality condition reads

K2c+ ωKc = K(K + ωI)c = Kf

If K has a trivial kernel, this equation is satisfied iff

(K + ωI)c = f
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10 Support vector machines

10.1 Binary classification and linear separability

Given N points X = {x1, . . . ,xN} ⊂ Rd and labels yi ∈ {−1, 1} for i = 1, . . . , N , we introduce
the sets

X+ := {xi ∈ X : yi = 1}
X− := {xi ∈ X : yi = −1}

(10.1)

We are interested in solving the

Problem 10.1 (Binary classification problem). Given the two sets X+ and X− from (10.1),
find a function f : Rd → R such that f(x) > 0 for all x ∈ X+ and f(x) < 0 for all x ∈ X−. ◀

In the easiest case, the two sets can be split by a separating hyper-plane.

Definition 10.2 (Linear separability). The sets X+ and X− are called linearly separable, iff
there exists a separating hyper-plane

H = {x ∈ Rd : n⊤x = m}

such that n⊤x > m iff x ∈ X+ and n⊤x ≤ m iff x ∈ X−. ◀

10.2 Hard-margin support vector machines

If X+ and X− are linearly separable, it is sufficient to determine an affine map

f(x) = w⊤x+ b

whose zero levelset
S := {x ∈ Rd : f(x) = 0}

serves as separator. More precisely, we wish to determine a vector w ∈ Rd and a threshold b
such that the following two separation conditions are satisfied:

w⊤xi + b ≥ 1, if yi = 1

w⊤xi + b ≤ −1, if yi = −1
(10.2)

These conditions can be summarized according to

yi
(
w⊤xi + b

)
≥ 1 (10.3)

for all i = 1, . . . , N .

x

y

w⊤x + b = 1

w⊤x + b = 0

w⊤x + b = −1

w

2
∥w∥

−b
∥w∥

Given that X+ and X− are linearly separable, typically there exists more than one solution.
Therefore, we aim to find a separator that maximizes the distance from X+ and X− (maximal
margin). In this case, there exist points x+ ∈ X+, x− ∈ X−, such that

w⊤x+ + b = 1, w⊤x− + b = −1 (10.4)

33



10 Support vector machines

which are called support vectors. Taking any pair of such points, we have

w⊤(x+ − x−) = 2 (10.5)

From this, we obtain the separator by solving the maximization problem

1

∥w∥2
w⊤(x+ − x−) =

2

∥w∥2
→ max (10.6)

The latter es equivalent to the minimization problem

1

2
∥w∥22 =

1

2

d∑
i=1

w2
i → min (10.7)

Imposing the separation conditions finally yields the constrained optimization

Problem 10.3 (primal).

min
[w,b]⊤∈Rd+1

1

2

d∑
i=1

w2
i

such that
yi
(
w⊤xi + b

)
≥ 1

for all i = 1, . . . , N . ◀

A solution [w⋆, b⋆]⊤ to Problem 10.3 gives rise to the hard margin SVM classifier according
to

c(x) = sign(w⊤x+ b) (10.8)

Fact 10.1. Let X = {x1, . . . ,xN} ⊂ Rd with labels yi ∈ {−1, 1} for i = 1, . . . , N be given. If
the sets X+ and X− are non-empty and linearly separable, then the optimization Problem 10.3
has a unique solution [w⋆, b⋆]⊤ with w⋆ ̸= 0. ◁

10.3 Lagrangian formulation and KKT conditions

To solve the optimization Problem 10.3, we introduce the N non-negative Lagrange multipliers
λi, i = 1, . . . , N , and consider the Lagrange functional

L(w, b,λ) = 1

2
∥w∥22 −

N∑
i=1

λi

(
yi(w

⊤xi + b)− 1
)

(10.9)

The constrained optimization Problem 10.3 is now equivalent to the unconstrained one

min
[w,b]⊤∈Rd+1

max
λ∈RN

L(w, b,λ) (10.10)

which is called the primal problem.

Minimizing L with respect to w and b yields the first order optimality conditions

∂

∂w
L = w −

N∑
i=1

λiyixi = 0

∂

∂b
L = −

N∑
i=1

λiyi = 0

(10.11)

In addition, we have to satisfy the complementarity conditions

λi ≥ 0, yi(w
⊤xi + b)− 1 ≥ 0, λi

(
yi(w

⊤xi + b)− 1
)
= 0 (10.12)

for i = 1, . . . , N .

Equations (10.11) and (10.12) are known as Karush–Kuhn–Tucker conditions (KKT). They are
necessary and sufficient for the existence of an optimal solution. Particularly, (10.12) ensures
that either xi is lying on the hyperplane yi(w⊤xi + b) = 1 or λi = 0.

34



10 Support vector machines

10.4 Dual problem and primal–dual correspondence

Inserting (10.11) into (10.9) eliminates the variables w, b according to

L(w, b,λ) =
N∑
i=1

λi −
1

2

N∑
i,j=1

λiλjyiyjx
⊤
i xj =: −f(λ) (10.13)

Problem 10.4 (dual).
min
λ∈RN

f(λ)

such that
N∑
i=1

λiyi = 0, λi ≥ 0

for all i = 1, . . . , N . This is called the dual problem to Problem 10.3. ◀

Vice versa, wa can solve Problem 10.3 by solving Problem 10.4 and inserting (10.11). Therefore,
we have the following

Theorem 10.2. Let λ⋆ ∈ RN be a solution to the dual Problem 10.4. Setting

w⋆ :=

N∑
i=1

λ⋆
i yixi

and choosing b⋆ such that
yi
(
(w⋆)⊤xi + b⋆

)
= 1

for any i ∈ {1, . . . , N} with λi ̸= 0 yields the solution [w⋆, b⋆]⊤ to Problem 10.3. ◁

A solution to the dual problem exists whenever the conditions of Fact 10.1 are satisfied.

Remark 10.1. Since f in Problem 10.4 is not strictly convex, the solution may not be unique.
The optimization problem can efficiently be solved by the active set method. ◀

10.5 Kernel support vector machines

We finish this chapter by considering the situation that the sets X+ and X−, cf. (10.1), are
not linearly separable. In this case, we replace the inner product x⊤y in (10.8) by the inner
product of the canonical feature map, i.e.,

⟨K(x, ·),K(y, ·)⟩H = K(x,y)

for all x,y ∈ X.

In what follows, we assume that the data (φi, yi), i = 1, . . . , N , is linearly separable in the
RKHS H. Then there exist

w ∈ HX := span{K(x1, ·), . . . ,K(xN , ·)} ⊂ H, b ∈ R

such that
yi
(
⟨w,K(xi, ·)⟩H + b

)
≥ 1

for all i = 1, . . . , N .

Remark 10.2. The kernel interpolant

w(x) =

N∑
i=1

yiℓi(x)

obviously satisfies w(xi) = yi for i = 1, . . . , N and, hence, the above inequality for b = 0.
Therefore, the existence of a solution is guaranteed whenever the kernel is strictly positive
definite. ◀
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Analogously to the linear case, the weight is obtained by solving the optimization problem

min
(w,b)∈HX×R

1

2
∥w∥2H (10.14)

such that the constraints above are satisfied. The existence and uniqueness of a solution is
obtained analogously to Fact 10.1. Considering the dual problem yields the optimization prob-
lem

min
λ∈RN

1

2

N∑
i,j=1

λiλjyiyjK(xi,xj)−
N∑
i=1

λi (10.15)

with the constraints
N∑
i=1

λiyi = 0, λi ≥ 0

for all i = 1, . . . , N .

Given a solution λ⋆, we retrieve w⋆ via

w⋆ =

N∑
i=1

λ⋆
i yiK(xi, ·)

and b⋆ by a choice such that
yi
(
⟨w,K(xi, ·)⟩H + b⋆

)
= 1

for any i ∈ {1, . . . , N} with λi ̸= 0. The classifier is then finally given by

c(x) = sign

(
N∑
i=1

λ⋆
i yiK(xi,x) + b⋆

)
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